Trust Region Methods

Trust Region Methods PDF Author: A. R. Conn
Publisher: SIAM
ISBN: 0898714605
Category : Mathematics
Languages : en
Pages : 960

Get Book Here

Book Description
Mathematics of Computing -- General.

Trust Region Methods

Trust Region Methods PDF Author: A. R. Conn
Publisher: SIAM
ISBN: 0898714605
Category : Mathematics
Languages : en
Pages : 960

Get Book Here

Book Description
Mathematics of Computing -- General.

Optimization in Chemical Engineering

Optimization in Chemical Engineering PDF Author: Suman Dutta
Publisher: Cambridge University Press
ISBN: 1316691799
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.

Mathematical Programming The State of the Art

Mathematical Programming The State of the Art PDF Author: A. Bachem
Publisher: Springer Science & Business Media
ISBN: 3642688748
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization PDF Author: Harbir Antil
Publisher: Springer
ISBN: 1493986368
Category : Mathematics
Languages : en
Pages : 435

Get Book Here

Book Description
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Introduction to Derivative-Free Optimization

Introduction to Derivative-Free Optimization PDF Author: Andrew R. Conn
Publisher: SIAM
ISBN: 0898716683
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.

Numerical Optimization

Numerical Optimization PDF Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686

Get Book Here

Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming PDF Author: Jon Lee
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687

Get Book Here

Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds PDF Author: P.-A. Absil
Publisher: Princeton University Press
ISBN: 1400830249
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Real-Time Optimization

Real-Time Optimization PDF Author: Dominique Bonvin
Publisher: MDPI
ISBN: 303842448X
Category : Electronic book
Languages : en
Pages : 255

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes

Algorithms for Decision Making

Algorithms for Decision Making PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262047012
Category : Computers
Languages : en
Pages : 701

Get Book Here

Book Description
A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.