Transport Phenomena in Thin Rotating Liquid Films Including

Transport Phenomena in Thin Rotating Liquid Films Including PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721030507
Category :
Languages : en
Pages : 42

Get Book Here

Book Description
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from whichFaghri, AmirGlenn Research CenterEXPERIMENTATION; NUMERICAL ANALYSIS; HEAT TRANSFER; THIN FILMS; ROTATING DISKS; HEAT TRANSFER COEFFICIENTS; TRANSPORT PROPERTIES; TEMPERATURE EFFECTS; NUCLEATE BOILING

Transport Phenomena in Thin Rotating Liquid Films Including

Transport Phenomena in Thin Rotating Liquid Films Including PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721030507
Category :
Languages : en
Pages : 42

Get Book Here

Book Description
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from whichFaghri, AmirGlenn Research CenterEXPERIMENTATION; NUMERICAL ANALYSIS; HEAT TRANSFER; THIN FILMS; ROTATING DISKS; HEAT TRANSFER COEFFICIENTS; TRANSPORT PROPERTIES; TEMPERATURE EFFECTS; NUCLEATE BOILING

Transport Phenomena in Rotating Machinery

Transport Phenomena in Rotating Machinery PDF Author: J. H. Kim
Publisher: CRC Press
ISBN: 9781560320135
Category : Science
Languages : en
Pages : 572

Get Book Here

Book Description
Completing the authoritative coverage begun in Dynamics of Rotating Machinery, this text offers 36 current chapters focusing on the areas of fluid flow, heat transfer, multiple flow, cavitation and design.

Mass Transfer to a Thin Liquid Film Over a Rotating Disk with Simultaneous Chemical Reaction

Mass Transfer to a Thin Liquid Film Over a Rotating Disk with Simultaneous Chemical Reaction PDF Author: Sathyamurthy Rajagopalan
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 452

Get Book Here

Book Description


Mass Transfer to Thin Liquid Films on Rotating Surfaces, with and Without Chemical Reaction

Mass Transfer to Thin Liquid Films on Rotating Surfaces, with and Without Chemical Reaction PDF Author: Stephen Russell Moore
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Transport Phenomena in Multiphase Systems

Transport Phenomena in Multiphase Systems PDF Author: Amir Faghri
Publisher: Elsevier
ISBN: 0080547680
Category : Technology & Engineering
Languages : en
Pages : 1060

Get Book Here

Book Description
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors

The Characteristics of a Thin Liquid Film on a Spinning Disk

The Characteristics of a Thin Liquid Film on a Spinning Disk PDF Author: Carl Gazley
Publisher:
ISBN:
Category : Liquid films
Languages : en
Pages : 374

Get Book Here

Book Description
An experimental study of thin liquid films on a spinning disk is described. Such films are characterized by large values of the ratio of interfacial area to liquid volume, can be formed in very small equipment compared to falling films, and their development is independent of surface orientation to the gravitational field. This makes them interesting for a number of energy and mass transfer processes. The paper summarizes the available numerical and analytical studies of the fluid-mechanical characteristics of spinning films and presents measurements of average film thickness as a function of radial position, liquid flow rate, and rotational speed. In spite of surface-tension phenomena (waves, dry spots, etc.) not accounted for in the theoretical study, the data indicate that the theory predicts the proper relative effects of the several variables. (Author).

Transport Phenomena

Transport Phenomena PDF Author: R. Byron Bird
Publisher: John Wiley & Sons
ISBN: 0470115394
Category : Technology & Engineering
Languages : en
Pages : 935

Get Book Here

Book Description
Transport Phenomena has been revised to include deeper and more extensive coverage of heat transfer, enlarged discussion of dimensional analysis, a new chapter on flow of polymers, systematic discussions of convective momentum,and energy. Topics also include mass transport, momentum transport and energy transport, which are presented at three different scales: molecular, microscopic and macroscopic. If this is your first look at Transport Phenomena you'll quickly learn that its balanced introduction to the subject of transport phenomena is the foundation of its long-standing success.

Transport Phenomena Fundamentals

Transport Phenomena Fundamentals PDF Author: Joel L. Plawsky
Publisher: CRC Press
ISBN: 1351624873
Category : Science
Languages : en
Pages : 863

Get Book Here

Book Description
The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.

Advanced Transport Phenomena

Advanced Transport Phenomena PDF Author: L. Gary Leal
Publisher: Cambridge University Press
ISBN: 1139462067
Category : Technology & Engineering
Languages : en
Pages : 7

Get Book Here

Book Description
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.

Thin Liquid Films

Thin Liquid Films PDF Author: Ralf Blossey
Publisher: Springer Science & Business Media
ISBN: 9400744552
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films (sometimes referred to as “ultrathin”) have proven to be an invaluable experimental model system. What is it that makes thin film instabilities special and interesting? First, thin polymeric films have an important range of applications. An understanding of their instabilities is therefore of practical relevance for the design of such films. The first chapter of the book intends to give a snapshot of current applications, and an outlook on promising future ones. Second, thin liquid films are an interdisciplinary research topic, which leads to a fairly heterogeneous community working on the topic. It justifies attempting to write a text which gives a coherent presentation of the field which researchers across their specialized communities might be interested in. Finally, thin liquid films are an interesting laboratory for a theorist to confront a well-established theory, hydrodynamics, with its limits. Thin films are therefore a field in which a highly fruitful exchange and collaboration exists between experimentalists and theorists. The book stretches from the more concrete to more abstract levels of study: we roughly progress from applications via theory and experiment to rigorous mathematical theory. For an experimental scientist, the book should serve as a reference and guide to what is the current consensus of the theoretical underpinnings of the field of thin film dynamics. Controversial problems on which such a consensus has not yet been reached are clearly indicated in the text, as well as discussed in a final chapter. From a theoretical point of view, the field of dewetting has mainly been treated in a mathematically ‘light’ yet elegant fashion, often making use of scaling arguments. For the untrained researcher, this approach is not always easy to follow. The present book attempts to bridge between the ‘light’ and the ‘rigorous’, always with the ambition to enhance insight and understanding - and to not let go the elegance of the theory.