Training Students to Extract Value from Big Data

Training Students to Extract Value from Big Data PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309314402
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
As the availability of high-throughput data-collection technologies, such as information-sensing mobile devices, remote sensing, internet log records, and wireless sensor networks has grown, science, engineering, and business have rapidly transitioned from striving to develop information from scant data to a situation in which the challenge is now that the amount of information exceeds a human's ability to examine, let alone absorb, it. Data sets are increasingly complex, and this potentially increases the problems associated with such concerns as missing information and other quality concerns, data heterogeneity, and differing data formats. The nation's ability to make use of data depends heavily on the availability of a workforce that is properly trained and ready to tackle high-need areas. Training students to be capable in exploiting big data requires experience with statistical analysis, machine learning, and computational infrastructure that permits the real problems associated with massive data to be revealed and, ultimately, addressed. Analysis of big data requires cross-disciplinary skills, including the ability to make modeling decisions while balancing trade-offs between optimization and approximation, all while being attentive to useful metrics and system robustness. To develop those skills in students, it is important to identify whom to teach, that is, the educational background, experience, and characteristics of a prospective data-science student; what to teach, that is, the technical and practical content that should be taught to the student; and how to teach, that is, the structure and organization of a data-science program. Training Students to Extract Value from Big Data summarizes a workshop convened in April 2014 by the National Research Council's Committee on Applied and Theoretical Statistics to explore how best to train students to use big data. The workshop explored the need for training and curricula and coursework that should be included. One impetus for the workshop was the current fragmented view of what is meant by analysis of big data, data analytics, or data science. New graduate programs are introduced regularly, and they have their own notions of what is meant by those terms and, most important, of what students need to know to be proficient in data-intensive work. This report provides a variety of perspectives about those elements and about their integration into courses and curricula.

Training Students to Extract Value from Big Data

Training Students to Extract Value from Big Data PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309314402
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
As the availability of high-throughput data-collection technologies, such as information-sensing mobile devices, remote sensing, internet log records, and wireless sensor networks has grown, science, engineering, and business have rapidly transitioned from striving to develop information from scant data to a situation in which the challenge is now that the amount of information exceeds a human's ability to examine, let alone absorb, it. Data sets are increasingly complex, and this potentially increases the problems associated with such concerns as missing information and other quality concerns, data heterogeneity, and differing data formats. The nation's ability to make use of data depends heavily on the availability of a workforce that is properly trained and ready to tackle high-need areas. Training students to be capable in exploiting big data requires experience with statistical analysis, machine learning, and computational infrastructure that permits the real problems associated with massive data to be revealed and, ultimately, addressed. Analysis of big data requires cross-disciplinary skills, including the ability to make modeling decisions while balancing trade-offs between optimization and approximation, all while being attentive to useful metrics and system robustness. To develop those skills in students, it is important to identify whom to teach, that is, the educational background, experience, and characteristics of a prospective data-science student; what to teach, that is, the technical and practical content that should be taught to the student; and how to teach, that is, the structure and organization of a data-science program. Training Students to Extract Value from Big Data summarizes a workshop convened in April 2014 by the National Research Council's Committee on Applied and Theoretical Statistics to explore how best to train students to use big data. The workshop explored the need for training and curricula and coursework that should be included. One impetus for the workshop was the current fragmented view of what is meant by analysis of big data, data analytics, or data science. New graduate programs are introduced regularly, and they have their own notions of what is meant by those terms and, most important, of what students need to know to be proficient in data-intensive work. This report provides a variety of perspectives about those elements and about their integration into courses and curricula.

Data Science for Undergraduates

Data Science for Undergraduates PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139

Get Book Here

Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.

Refining the Concept of Scientific Inference When Working with Big Data

Refining the Concept of Scientific Inference When Working with Big Data PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309454476
Category : Mathematics
Languages : en
Pages : 115

Get Book Here

Book Description
The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible. In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop.

Big Data and Health Analytics

Big Data and Health Analytics PDF Author: Katherine Marconi
Publisher: CRC Press
ISBN: 1482229250
Category : Business & Economics
Languages : en
Pages : 374

Get Book Here

Book Description
This book provides frameworks, use cases, and examples that illustrate the role of big data and analytics in modern health care, including how public health information can inform health delivery. Written for health care professionals and executives, this book presents the current thinking of academic and industry researchers and leaders from around the world. Using non-technical language, it includes case studies that illustrate the business processes that underlie the use of big data and health analytics to improve health care delivery.

Critical Thinking for Strategic Intelligence

Critical Thinking for Strategic Intelligence PDF Author: Katherine Hibbs Pherson
Publisher: CQ Press
ISBN: 1506316875
Category : Political Science
Languages : en
Pages : 409

Get Book Here

Book Description
The Second Edition of Critical Thinking for Strategic Intelligence provides a basic introduction to the critical thinking skills employed within the intelligence community. This easy-to-use handbook is framed around twenty key questions that all analysts must ask themselves as they prepare to conduct research, generate hypotheses, evaluate sources of information, draft papers, and ultimately present analysis. Drawing upon their decades of teaching and analytic experience, Katherine Hibbs Pherson and Randolph H. Pherson have updated the book with useful graphics that diagram and display the processes and structured analytic techniques used to arrive at the best possible analytical product.

Big Data and Human-Environment Systems

Big Data and Human-Environment Systems PDF Author: Steven M. Manson
Publisher: Cambridge University Press
ISBN: 1108486282
Category : Business & Economics
Languages : en
Pages : 271

Get Book Here

Book Description
The first comprehensive treatment of data science as a new and powerful way to understand and manage human-environment interactions.

Harnessing the Power of Analytics

Harnessing the Power of Analytics PDF Author: Leila Halawi
Publisher: Springer Nature
ISBN: 3030897125
Category : Technology & Engineering
Languages : en
Pages : 153

Get Book Here

Book Description
This text highlights the difference between analytics and data science, using predictive analytic techniques to analyze different historical data, including aviation data and concrete data, interpreting the predictive models, and highlighting the steps to deploy the models and the steps ahead. The book combines the conceptual perspective and a hands-on approach to predictive analytics using SAS VIYA, an analytic and data management platform. The authors use SAS VIYA to focus on analytics to solve problems, highlight how analytics is applied in the airline and business environment, and compare several different modeling techniques. They decipher complex algorithms to demonstrate how they can be applied and explained within improving decisions.

Envisioning the Data Science Discipline

Envisioning the Data Science Discipline PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309465052
Category : Education
Languages : en
Pages : 69

Get Book Here

Book Description
The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.

Commerce, Justice, Science, and Related Agencies Appropriations for 2017: Justification of the budget estimates

Commerce, Justice, Science, and Related Agencies Appropriations for 2017: Justification of the budget estimates PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Commerce, Justice, Science, and Related Agencies
Publisher:
ISBN:
Category : Administrative agencies
Languages : en
Pages : 1266

Get Book Here

Book Description


Thriving on Our Changing Planet

Thriving on Our Changing Planet PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309467578
Category : Science
Languages : en
Pages : 717

Get Book Here

Book Description
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.