Topological Methods, Variational Methods and Their Applications

Topological Methods, Variational Methods and Their Applications PDF Author: Haim Br‚zis
Publisher: World Scientific
ISBN: 9812382623
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 1418, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University. 166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrvdinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.

Topological Methods, Variational Methods and Their Applications

Topological Methods, Variational Methods and Their Applications PDF Author: Haim Br‚zis
Publisher: World Scientific
ISBN: 9812382623
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 1418, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University. 166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrvdinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems PDF Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
ISBN: 1461493234
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems PDF Author: Dorin Bucur
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.

Topological Methods For Set-valued Nonlinear Analysis

Topological Methods For Set-valued Nonlinear Analysis PDF Author: Enayet U Tarafdar
Publisher: World Scientific
ISBN: 9814476218
Category : Mathematics
Languages : en
Pages : 627

Get Book Here

Book Description
This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.

Progress In Variational Methods - Proceedings Of The International Conference On Variational Methods

Progress In Variational Methods - Proceedings Of The International Conference On Variational Methods PDF Author: Chungen Liu
Publisher: World Scientific
ISBN: 9814462616
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
In the last forty years, nonlinear analysis has been broadly and rapidly developed. Lectures presented in the International Conference on Variational Methods at the Chern Institute of Mathematics in Tianjin of May 2009 reflect this development from different angles. This volume contains articles based on lectures in the following areas of nonlinear analysis: critical point theory, Hamiltonian dynamics, partial differential equations and systems, KAM theory, bifurcation theory, symplectic geometry, geometrical analysis, and celestial mechanics. Combinations of topological, analytical (especially variational), geometrical, and algebraic methods in these researches play important roles. In this proceedings, introductory materials on new theories and surveys on traditional topics are also given. Further perspectives and open problems on hopeful research topics in related areas are described and proposed. Researchers, graduate and postgraduate students from a wide range of areas in mathematics and physics will find contents in this proceedings are helpful.

Progress in Variational Methods

Progress in Variational Methods PDF Author: Chungen Liu
Publisher: World Scientific
ISBN: 9814327840
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
In the last forty years, nonlinear analysis has been broadly and rapidly developed. Lectures presented in the International Conference on Variational Methods at the Chern Institute of Mathematics in Tianjin of May 2009 reflect this development from different angles. This volume contains articles based on lectures in the following areas of nonlinear analysis: critical point theory, Hamiltonian dynamics, partial differential equations and systems, KAM theory, bifurcation theory, symplectic geometry, geometrical analysis, and celestial mechanics. Combinations of topological, analytical (especially variational), geometrical, and algebraic methods in these researches play important roles. In this proceedings, introductory materials on new theories and surveys on traditional topics are also given. Further perspectives and open problems on hopeful research topics in related areas are described and proposed. Researchers, graduate and postgraduate students from a wide range of areas in mathematics and physics will find contents in this proceedings are helpful.

Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems PDF Author: Yanheng Ding
Publisher: World Scientific
ISBN: 9814474509
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.

Variable Lebesgue Spaces

Variable Lebesgue Spaces PDF Author: David V. Cruz-Uribe
Publisher: Springer Science & Business Media
ISBN: 3034805489
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

Variational and Monotonicity Methods in Nonsmooth Analysis

Variational and Monotonicity Methods in Nonsmooth Analysis PDF Author: Nicuşor Costea
Publisher: Springer Nature
ISBN: 3030816710
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature. The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-contained character of the text. As the title suggests, in the following sections, both variational and topological methods are developed based on critical and fixed point results for nonsmooth functions. The authors employ these methods to handle the exemplary problems from game theory and engineering that are investigated in Part II, respectively Part III. Part IV is devoted to applications in contact mechanics. The book will be of interest to PhD students and researchers in applied mathematics as well as specialists working in nonsmooth analysis and engineering.

Variational Methods

Variational Methods PDF Author: Michael Struwe
Publisher: Springer Science & Business Media
ISBN: 3662041944
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
Hilberts talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateaus problem by Douglas and Rad. This third edition gives a concise introduction to variational methods and presents an overview of areas of current research in the field, plus a survey on new developments.