An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer Nature
ISBN: 3030369153
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer Nature
ISBN: 3030369153
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

Topological Derivatives in Shape Optimization

Topological Derivatives in Shape Optimization PDF Author: Antonio André Novotny
Publisher: Springer Science & Business Media
ISBN: 3642352456
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.

Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems PDF Author: Dorin Bucur
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.

Applications of the Topological Derivative Method

Applications of the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer
ISBN: 3030054322
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials PDF Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602

Get Book Here

Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.

Shapes and Geometries

Shapes and Geometries PDF Author: M. C. Delfour
Publisher: SIAM
ISBN: 0898719364
Category : Mathematics
Languages : en
Pages : 637

Get Book Here

Book Description
Presents the latest groundbreaking theoretical foundation to shape optimization in a form accessible to mathematicians, scientists and engineers.

Computational Topology for Data Analysis

Computational Topology for Data Analysis PDF Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization PDF Author: Harbir Antil
Publisher: Springer
ISBN: 1493986368
Category : Mathematics
Languages : en
Pages : 435

Get Book Here

Book Description
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Shape Optimization by the Homogenization Method

Shape Optimization by the Homogenization Method PDF Author: Gregoire Allaire
Publisher: Springer Science & Business Media
ISBN: 1468492861
Category : Technology & Engineering
Languages : en
Pages : 470

Get Book Here

Book Description
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.

An Introduction to Structural Optimization

An Introduction to Structural Optimization PDF Author: Peter W. Christensen
Publisher: Springer Science & Business Media
ISBN: 1402086652
Category : Technology & Engineering
Languages : en
Pages : 214

Get Book Here

Book Description
This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.