Author: Vladimir Igorevich Arnold
Publisher: Springer Science & Business Media
ISBN: 9783540505839
Category : Celestial mechanics
Languages : en
Pages : 264
Book Description
'EMS 6' is the latest volume in the sub series 'Dynamical Systems of the Encyclopaedia'. It is the first of two volumes covering Singularity Theory, which, besides its fundamental use in Dynamical Systems and Bifurcation Theory, is an important part of other fields such as algebraic geometry, differential geometry and geometric optics.
Dynamical Systems VI
Author: Vladimir Igorevich Arnold
Publisher: Springer Science & Business Media
ISBN: 9783540505839
Category : Celestial mechanics
Languages : en
Pages : 264
Book Description
'EMS 6' is the latest volume in the sub series 'Dynamical Systems of the Encyclopaedia'. It is the first of two volumes covering Singularity Theory, which, besides its fundamental use in Dynamical Systems and Bifurcation Theory, is an important part of other fields such as algebraic geometry, differential geometry and geometric optics.
Publisher: Springer Science & Business Media
ISBN: 9783540505839
Category : Celestial mechanics
Languages : en
Pages : 264
Book Description
'EMS 6' is the latest volume in the sub series 'Dynamical Systems of the Encyclopaedia'. It is the first of two volumes covering Singularity Theory, which, besides its fundamental use in Dynamical Systems and Bifurcation Theory, is an important part of other fields such as algebraic geometry, differential geometry and geometric optics.
Introduction to Singularities and Deformations
Author: Gert-Martin Greuel
Publisher: Springer Science & Business Media
ISBN: 3540284192
Category : Mathematics
Languages : en
Pages : 482
Book Description
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Publisher: Springer Science & Business Media
ISBN: 3540284192
Category : Mathematics
Languages : en
Pages : 482
Book Description
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Handbook of Geometry and Topology of Singularities I
Author: José Luis Cisneros Molina
Publisher: Springer Nature
ISBN: 3030530612
Category : Mathematics
Languages : en
Pages : 616
Book Description
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Publisher: Springer Nature
ISBN: 3030530612
Category : Mathematics
Languages : en
Pages : 616
Book Description
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Introduction to Singularities
Author: Shihoko Ishii
Publisher: Springer
ISBN: 443155081X
Category : Mathematics
Languages : en
Pages : 227
Book Description
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.
Publisher: Springer
ISBN: 443155081X
Category : Mathematics
Languages : en
Pages : 227
Book Description
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.
Sheaves in Topology
Author: Alexandru Dimca
Publisher: Springer Science & Business Media
ISBN: 3642188680
Category : Mathematics
Languages : en
Pages : 253
Book Description
Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.
Publisher: Springer Science & Business Media
ISBN: 3642188680
Category : Mathematics
Languages : en
Pages : 253
Book Description
Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.
Singularities and Groups in Bifurcation Theory
Author: Martin Golubitsky
Publisher: Springer Science & Business Media
ISBN: 146125034X
Category : Mathematics
Languages : en
Pages : 480
Book Description
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.
Publisher: Springer Science & Business Media
ISBN: 146125034X
Category : Mathematics
Languages : en
Pages : 480
Book Description
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.
Differential Geometry From A Singularity Theory Viewpoint
Author: Shyuichi Izumiya
Publisher: World Scientific
ISBN: 9814590460
Category : Mathematics
Languages : en
Pages : 383
Book Description
Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces.
Publisher: World Scientific
ISBN: 9814590460
Category : Mathematics
Languages : en
Pages : 383
Book Description
Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces.
Singularity Theory and Gravitational Lensing
Author: Arlie O. Petters
Publisher: Springer Science & Business Media
ISBN: 1461201454
Category : Science
Languages : en
Pages : 616
Book Description
This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.
Publisher: Springer Science & Business Media
ISBN: 1461201454
Category : Science
Languages : en
Pages : 616
Book Description
This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.
Singularity Theory and an Introduction to Catastrophe Theory
Author: Yung-Chen Lu
Publisher:
ISBN: 9781461299103
Category :
Languages : en
Pages : 199
Book Description
Publisher:
ISBN: 9781461299103
Category :
Languages : en
Pages : 199
Book Description
Semantic Singularities
Author: Keith Simmons
Publisher: Oxford University Press
ISBN: 0198791542
Category : Language Arts & Disciplines
Languages : en
Pages : 260
Book Description
This book aims to provide a solution to the semantic paradoxes. It argues for a unified solution to the paradoxes generated by our concepts of denotation, predicate extension, and truth. The solution makes two main claims. The first is that our semantic expressions 'denotes', 'extension' and 'true' are context-sensitive. The second, inspired by a brief, tantalizing remark of Godel's, is that these expressions are significant everywhere except for certain singularities, in analogy with division by zero. A formal theory of singularities is presented and applied to a wide variety of versions of the definability paradoxes, Russell's paradox, and the Liar paradox. Keith Simmons argues that the singularity theory satisfies the following desiderata: it recognizes that the proper setting of the semantic paradoxes is natural language, not regimented formal languages; it minimizes any revision to our semantic concepts; it respects as far as possible Tarski's intuition that natural languages are universal; it responds adequately to the threat of revenge paradoxes; and it preserves classical logic and semantics. Simmons draws out the consequences of the singularity theory for deflationary views of our semantic concepts, and concludes that if we accept the singularity theory, we must reject deflationism.
Publisher: Oxford University Press
ISBN: 0198791542
Category : Language Arts & Disciplines
Languages : en
Pages : 260
Book Description
This book aims to provide a solution to the semantic paradoxes. It argues for a unified solution to the paradoxes generated by our concepts of denotation, predicate extension, and truth. The solution makes two main claims. The first is that our semantic expressions 'denotes', 'extension' and 'true' are context-sensitive. The second, inspired by a brief, tantalizing remark of Godel's, is that these expressions are significant everywhere except for certain singularities, in analogy with division by zero. A formal theory of singularities is presented and applied to a wide variety of versions of the definability paradoxes, Russell's paradox, and the Liar paradox. Keith Simmons argues that the singularity theory satisfies the following desiderata: it recognizes that the proper setting of the semantic paradoxes is natural language, not regimented formal languages; it minimizes any revision to our semantic concepts; it respects as far as possible Tarski's intuition that natural languages are universal; it responds adequately to the threat of revenge paradoxes; and it preserves classical logic and semantics. Simmons draws out the consequences of the singularity theory for deflationary views of our semantic concepts, and concludes that if we accept the singularity theory, we must reject deflationism.