Rough Sets

Rough Sets PDF Author: Lech Polkowski
Publisher: Springer Science & Business Media
ISBN: 3790817767
Category : Mathematics
Languages : en
Pages : 549

Get Book Here

Book Description
A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.

Rough Sets

Rough Sets PDF Author: Lech Polkowski
Publisher: Springer Science & Business Media
ISBN: 3790817767
Category : Mathematics
Languages : en
Pages : 549

Get Book Here

Book Description
A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.

Rough Sets

Rough Sets PDF Author: Z. Pawlak
Publisher: Springer Science & Business Media
ISBN: 9401135347
Category : Computers
Languages : en
Pages : 247

Get Book Here

Book Description
To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.

Rough Sets and Data Mining

Rough Sets and Data Mining PDF Author: T.Y. Lin
Publisher: Springer Science & Business Media
ISBN: 1461314615
Category : Computers
Languages : en
Pages : 429

Get Book Here

Book Description
Rough Sets and Data Mining: Analysis of Imprecise Data is an edited collection of research chapters on the most recent developments in rough set theory and data mining. The chapters in this work cover a range of topics that focus on discovering dependencies among data, and reasoning about vague, uncertain and imprecise information. The authors of these chapters have been careful to include fundamental research with explanations as well as coverage of rough set tools that can be used for mining data bases. The contributing authors consist of some of the leading scholars in the fields of rough sets, data mining, machine learning and other areas of artificial intelligence. Among the list of contributors are Z. Pawlak, J Grzymala-Busse, K. Slowinski, and others. Rough Sets and Data Mining: Analysis of Imprecise Data will be a useful reference work for rough set researchers, data base designers and developers, and for researchers new to the areas of data mining and rough sets.

Topics in Rough Set Theory

Topics in Rough Set Theory PDF Author: Seiki Akama
Publisher: Springer Nature
ISBN: 3030295664
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This book discusses current topics in rough set theory. Since Pawlak’s rough set theory was first proposed to offer a basis for imprecise and uncertain data and reasoning from data, many workers have investigated its foundations and applications. Examining various topical issues, including object-oriented rough set models, recommendation systems, decision tables, and granular computing, the book is a valuable resource for students and researchers in the field.

Transactions on Rough Sets II

Transactions on Rough Sets II PDF Author: James F. Peters
Publisher: Springer
ISBN: 3540277781
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness and incompleteness, such as fuzzy sets and theory of evidence. This second volume of the Transactions on Rough Sets presents 17 thoroughly reviewed revised papers devoted to rough set theory, fuzzy set theory; these papers highlight important aspects of these theories, their interrelation and application in various fields.

Incomplete Information: Rough Set Analysis

Incomplete Information: Rough Set Analysis PDF Author: Ewa Orlowska
Publisher: Springer Science & Business Media
ISBN: 9783790810493
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.

Data Mining and Knowledge Discovery in Real Life Applications

Data Mining and Knowledge Discovery in Real Life Applications PDF Author: Julio Ponce
Publisher: BoD – Books on Demand
ISBN: 390261353X
Category : Computers
Languages : en
Pages : 404

Get Book Here

Book Description
This book presents four different ways of theoretical and practical advances and applications of data mining in different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right way for the students, researchers and practitioners in their studies.

Rough Set Methods and Applications

Rough Set Methods and Applications PDF Author: Lech Polkowski
Publisher: Physica
ISBN: 3790818402
Category : Computers
Languages : en
Pages : 679

Get Book Here

Book Description
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications PDF Author: Muhammad Summair Raza
Publisher: Springer
ISBN: 9811049653
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
The book will provide: 1) In depth explanation of rough set theory along with examples of the concepts. 2) Detailed discussion on idea of feature selection. 3) Details of various representative and state of the art feature selection techniques along with algorithmic explanations. 4) Critical review of state of the art rough set based feature selection methods covering strength and weaknesses of each. 5) In depth investigation of various application areas using rough set based feature selection. 6) Complete Library of Rough Set APIs along with complexity analysis and detailed manual of using APIs 7) Program files of various representative Feature Selection algorithms along with explanation of each. The book will be a complete and self-sufficient source both for primary and secondary audience. Starting from basic concepts to state-of-the art implementation, it will be a constant source of help both for practitioners and researchers. Book will provide in-depth explanation of concepts supplemented with working examples to help in practical implementation. As far as practical implementation is concerned, the researcher/practitioner can fully concentrate on his/her own work without any concern towards implementation of basic RST functionality. Providing complexity analysis along with full working programs will further simplify analysis and comparison of algorithms.

Big Data Preprocessing

Big Data Preprocessing PDF Author: Julián Luengo
Publisher: Springer Nature
ISBN: 3030391051
Category : Computers
Languages : en
Pages : 193

Get Book Here

Book Description
This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.