Selected Topics in Gauge Theories

Selected Topics in Gauge Theories PDF Author: Walter Dittrich
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description

Selected Topics in Gauge Theories

Selected Topics in Gauge Theories PDF Author: Walter Dittrich
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description


Advanced Topics in Quantum Field Theory

Advanced Topics in Quantum Field Theory PDF Author: M. Shifman
Publisher: Cambridge University Press
ISBN: 1139501887
Category : Science
Languages : en
Pages : 641

Get Book Here

Book Description
Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.

Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics

Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics PDF Author: Erhard Seiler
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description


The Biggest Ideas in the Universe

The Biggest Ideas in the Universe PDF Author: Sean Carroll
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.

Quantum Field Theory

Quantum Field Theory PDF Author: François Gelis
Publisher: Cambridge University Press
ISBN: 110848090X
Category : Science
Languages : en
Pages : 611

Get Book Here

Book Description
A rigorous and self-contained text reviewing the fundamentals of quantum field theory and exploring advanced topics and modern techniques.

Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Gauge Theories of the Strong, Weak, and Electromagnetic Interactions PDF Author: Chris Quigg
Publisher: Princeton University Press
ISBN: 1400848229
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature--quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies

Advanced Concepts in Quantum Field Theory

Advanced Concepts in Quantum Field Theory PDF Author: James M. Cline
Publisher: Springer Nature
ISBN: 3030561682
Category : Science
Languages : en
Pages : 153

Get Book Here

Book Description
This book comprises the second half of a quantum field theory (QFT) course for graduate students. It gives a concise introduction to advanced concepts that are important for research in elementary particle theory. Topics include the path integral, loop expansion, Feynman rules, various regularization methods, renormalization, running couplings and the renormalization group, fixed points and asymptotic freedom, effective action, Coleman-Weinberg effective potential, fermions, the axial anomaly, QED, gauge fixing, nonabelian gauge theories, unitarity, optical theorem, Slavnov-Taylor identities, beta function of Yang-Mills theory, a heuristic derivation of asymptotic freedom, instantons in SU(N) gauge theory, theta vacua and the strong CP problem. Exercises are included and are intended for advanced graduate students or postdocs seeking to deepen their understanding of QFT.

Quantum Field Theory I

Quantum Field Theory I PDF Author: Edouard B. Manoukian
Publisher: Springer
ISBN: 3319309390
Category : Science
Languages : en
Pages : 599

Get Book Here

Book Description
This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.

Gravity, Gauge Theories and Quantum Cosmology

Gravity, Gauge Theories and Quantum Cosmology PDF Author: J.V. Narlikar
Publisher: Springer Science & Business Media
ISBN: 9400945086
Category : Science
Languages : en
Pages : 477

Get Book Here

Book Description
For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology.

Gauge Theory of Elementary Particle Physics

Gauge Theory of Elementary Particle Physics PDF Author: Ta-Pei Cheng
Publisher: Oxford University Press
ISBN: 0192652249
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.