Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Category : Mathematics
Languages : en
Pages : 778

Get Book Here

Book Description
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Category : Mathematics
Languages : en
Pages : 778

Get Book Here

Book Description
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Time Series Analysis Methods and Applications for Flight Data

Time Series Analysis Methods and Applications for Flight Data PDF Author: Jianye Zhang
Publisher: Springer
ISBN: 3662534304
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book Here

Book Description
This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

Handbook of Time Series Analysis

Handbook of Time Series Analysis PDF Author: Björn Schelter
Publisher: John Wiley & Sons
ISBN: 3527609512
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.

State-Space Methods for Time Series Analysis

State-Space Methods for Time Series Analysis PDF Author: Jose Casals
Publisher: CRC Press
ISBN: 131536025X
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Time Series Analysis and Its Applications

Time Series Analysis and Its Applications PDF Author: Robert H. Shumway
Publisher:
ISBN: 9781475732627
Category :
Languages : en
Pages : 568

Get Book Here

Book Description


Time Series Analysis

Time Series Analysis PDF Author: Jonathan D. Cryer
Publisher: Springer Science & Business Media
ISBN: 0387759581
Category : Business & Economics
Languages : en
Pages : 501

Get Book Here

Book Description
This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Time Series Analysis

Time Series Analysis PDF Author: Chun-Kit Ngan
Publisher: BoD – Books on Demand
ISBN: 1789847788
Category : Mathematics
Languages : en
Pages : 131

Get Book Here

Book Description
This book aims to provide readers with the current information, developments, and trends in a time series analysis, particularly in time series data patterns, technical methodologies, and real-world applications. This book is divided into three sections and each section includes two chapters. Section 1 discusses analyzing multivariate and fuzzy time series. Section 2 focuses on developing deep neural networks for time series forecasting and classification. Section 3 describes solving real-world domain-specific problems using time series techniques. The concepts and techniques contained in this book cover topics in time series research that will be of interest to students, researchers, practitioners, and professors in time series forecasting and classification, data analytics, machine learning, deep learning, and artificial intelligence.

Climate Time Series Analysis

Climate Time Series Analysis PDF Author: Manfred Mudelsee
Publisher: Springer Science & Business Media
ISBN: 9048194822
Category : Science
Languages : en
Pages : 497

Get Book Here

Book Description
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R PDF Author: Rami Krispin
Publisher: Packt Publishing Ltd
ISBN: 1788624041
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
Build efficient forecasting models using traditional time series models and machine learning algorithms. Key FeaturesPerform time series analysis and forecasting using R packages such as Forecast and h2oDevelop models and find patterns to create visualizations using the TSstudio and plotly packagesMaster statistics and implement time-series methods using examples mentionedBook Description Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods. What you will learnVisualize time series data and derive better insightsExplore auto-correlation and master statistical techniquesUse time series analysis tools from the stats, TSstudio, and forecast packagesExplore and identify seasonal and correlation patternsWork with different time series formats in RExplore time series models such as ARIMA, Holt-Winters, and moreEvaluate high-performance forecasting solutionsWho this book is for Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author:
Publisher: Elsevier
ISBN: 0444538631
Category : Mathematics
Languages : en
Pages : 777

Get Book Here

Book Description
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas