Time Resolved Photoelectron Spectroscopy for Femtosecond Characterization of X-ray Free-electron Laser Pulses

Time Resolved Photoelectron Spectroscopy for Femtosecond Characterization of X-ray Free-electron Laser Pulses PDF Author: Ivanka Grguraš
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Time Resolved Photoelectron Spectroscopy for Femtosecond Characterization of X-ray Free-electron Laser Pulses

Time Resolved Photoelectron Spectroscopy for Femtosecond Characterization of X-ray Free-electron Laser Pulses PDF Author: Ivanka Grguraš
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


X-Ray Free-Electron Laser

X-Ray Free-Electron Laser PDF Author: Kiyoshi Ueda
Publisher: MDPI
ISBN: 3038428795
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
This book is a printed edition of the Special Issue "X-Ray Free-Electron Laser" that was published in Applied Sciences

Macromolecular Crystallography

Macromolecular Crystallography PDF Author: Charles W. Carter
Publisher: Gulf Professional Publishing
ISBN: 9780121827779
Category : Computer simulation
Languages : en
Pages : 756

Get Book Here

Book Description
Annotation Accurate molecular structures is vital for rational drug design and for structure based functional studies directed toward the development of effective therapeutic agents and drugs. Crystallography can reliably predict structure, both in terms of folding and atomic details of bonding. * Phases * Map interpretation and refinement * Analysis and software.

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES) PDF Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Time-Resolved Soft X-Ray Absorption Spectroscopy of Molecules in the Gas and Liquid Phases

Time-Resolved Soft X-Ray Absorption Spectroscopy of Molecules in the Gas and Liquid Phases PDF Author: Cédric Schmidt
Publisher: Springer Nature
ISBN: 3030678385
Category : Science
Languages : en
Pages : 119

Get Book Here

Book Description
This work studies the relaxation dynamics of molecules in both the gas and liquid phases after strong field ionization, using transient absorption in the soft X-rays. In particular, the thesis presents the first realization of time-resolved X-ray absorption spectroscopy in the spectral water window with a laser-based HHG source. These remarkable experiments were not only performed for isolated molecules, but also in liquids, for which the spectral coverage of the K-edges of C, N, and O are of primary importance for investigating biological molecules. The technique relies on the generation of high-order harmonics to further probe the electronic structure of molecules. Using the atomic selectivity of high energies and the temporal coherence of laser technology, we demonstrate the observation of the first stages of chemical transformation of matter in the gas and liquid phases.

Ion-electron Coincidence Studies of Femtosecond Dynamics Triggered by Extreme Ultraviolet Photoionization of Atoms and Molecules

Ion-electron Coincidence Studies of Femtosecond Dynamics Triggered by Extreme Ultraviolet Photoionization of Atoms and Molecules PDF Author: Seyyed Javad Robatjazi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Photoelectron spectroscopy employing X-ray and extreme ultraviolet (XUV) radiation is one of the most important experimental methods to study the electronic structure of atoms, molecules, and solids. Recent developments of XUV and X-ray sources with ultrashort pulse durations, like free-electron lasers (FELs) and high-order harmonics of infrared lasers, enabled combining this approach with a concept of a time-resolved measurement, where a pair of synchronized short light pulses is used to initiate and observe a physical or chemical process of interest. Among other advances, such combination turned out to be particularly useful for atomic physics and gas-phase femtochemistry, where femtosecond or even sub-femtosecond short-wavelength radiation can be used to trigger the dynamics in high-lying states previously inaccessible for time-resolved measurements and offers a variety of novel schemes to probe light-induced electronic and nuclear motion. One of the key challenges for time-domain studies employing short-pulsed radiation sources is that they are necessarily broadband and, thus, typically populate a broad range of atomic of molecular states. The main goal of this thesis is to develop an experimental approach that enables state-selective analysis of the dynamics induced by such broadband femtosecond pulses in the XUV domain, and to apply it to study several exemplary reactions in photoionized molecules. Since reducing the bandwidth of the XUV pulse would ultimately limit the achievable temporal resolution, in this work the challenge of state selectivity is addressed by employing photoelectron-photoion and photoion-photoion coincident measurements. In the experimental apparatus developed as a part of this thesis, a double-sided velocity map imaging (VMI) spectrometer for coincident detection of electrons and ions is combined with a femtosecond pump-probe setup that includes a near-infrared (NIR) laser and a fiber-based XUV source based on high-order harmonics generation. This instrument has been commissioned, characterized, and applied to several time-resolved experiments on atomic and molecular targets. More specifically, this thesis describes three different sets of experiments. First, a brief overview of several XUV-NIR pump-probe measurements addressing two-color single, double or triple ionization of atoms is presented. Here, the main focus is set on capturing generic characteristic features of the corresponding two-color signals, and on revealing physical mechanisms determining their "transient" or "steady" behavior with respect to the time delay between the XUV and NIR pulses. The second series of experiments focuses on exploring coupled electronic and nuclear dynamics in XUV-ionized CO2 molecule probed by the synchronized NIR pulse. This study, which constitutes the central part of the thesis, relies on the detection of the photoelectron that reveals which electronic state is initially populated, in coincidence with ionic fragments, which provide information on the specific dissociation channel of the molecular ion after the interaction with both pulses. Here, we observe signatures of an electron-hole wave packet motion near a conical intersection of two low-lying cationic states, trace rotational dynamics determined by the dependence of the state-specific XUV photoionization cross section on molecular orientation, and disentangle the contributions of individual states to different dissociation pathways. The third series of experiments aims at studying nuclear dynamics in XUV-ionized alcohol molecules, focusing on the channels involving ultrafast hydrogen motion. Here, ion mass spectrometry measurements on methanol and its deuterated isotopologue CH3OH and CD3OH show that, depending on a specific XUV wavelength, the formation of molecular hydrogen or trihydrogen cations can be either dominated by the channels combining the hydrogen from the oxygen site with one or two hydrogens from the methyl carbon, or by the ejections of all hydrogen atoms from the methyl group. Coincident electron spectra for specific ionic fragments enable linking these channels to the calculated dissociation pathways leading to H2+ or H3+ formation. Finally, we present the results of XUV-NIR pump-probe experiments on ethanol, where a transient enhancement of particular dissociation channels has been observed. The experimental methodology presented in this work can be readily extended to a broad range of molecular systems, including both, molecular ions and high-lying excited states of the neutral molecules. At the same time, highly-differential data on small polyatomic molecules like CO2, methanol, and ethanol presented here, can be used to benchmark theoretical models for XUV ionization of these prototypical systems, improving our general understanding of light-induced molecular dynamics.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Dynamics at Solid State Surfaces and Interfaces, Volume 1

Dynamics at Solid State Surfaces and Interfaces, Volume 1 PDF Author: Uwe Bovensiepen
Publisher: John Wiley & Sons
ISBN: 352763343X
Category : Science
Languages : en
Pages : 631

Get Book Here

Book Description
This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

Nanodroplets

Nanodroplets PDF Author: Zhiming M. Wang
Publisher: Springer Science & Business Media
ISBN: 1461494729
Category : Technology & Engineering
Languages : en
Pages : 392

Get Book Here

Book Description
Nanodroplets, the basis of complex and advanced nanostructures such as quantum rings, quantum dots and quantum dot clusters for future electronic and optoelectronic materials and devices, have attracted the interdisciplinary interest of chemists, physicists and engineers. This book combines experimental and theoretical analyses of nanosized droplets which reveal many attractive properties. Coverage includes nanodroplet synthesis, structure, unique behaviors and their nanofabrication, including chapters on focused ion beam, atomic force microscopy, molecular beam epitaxy and the "vapor-liquid- solid" route. Particular emphasis is given to the behavior of metallic nanodroplets, water nanodroplets and nanodroplets in polymer and metamaterial nanocomposites. The contributions of leading scientists and their research groups will provide readers with deeper insight into the chemical and physical mechanisms, properties, and potential applications of various nanodroplets.

Attosecond and XUV Physics

Attosecond and XUV Physics PDF Author: Thomas Schultz
Publisher: John Wiley & Sons
ISBN: 3527677658
Category : Science
Languages : en
Pages : 624

Get Book Here

Book Description
This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.