Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations

Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations PDF Author: Ning Wang
Publisher:
ISBN: 9781321649284
Category :
Languages : en
Pages : 348

Get Book Here

Book Description
Continued advancements in high-speed computing and increased availability of earthquake strong motion data have been allowing for further progress in the area of soil-structure-interaction (SSI). Efforts in this dissertation are mainly concerned with three-dimensional (3D) computational analyses of pile foundations and bridge-foundation-ground systems. This includes Finite Element (FE) modeling of ground-pile foundation systems, documentation and assessment of recorded bridge strong motion data, and identification of dynamic bridge-foundation system characteristics. Currently, simplified approaches, such as p-y curves or the foundation stiffness matrix representation, are employed mainly when considering Soil-Structure-Interaction. However, there is much interest in more representative modeling techniques in order to improve our assessments of seismic pile foundation response. In an effort to address this challenge, 3D FE numerical investigations are conducted related to the response of piles and pile groups under lateral load. Distribution of loads and moments among the piles within the group is investigated. Effects of permeability and loading rate on lateral pile response are addressed for saturated relatively impervious cohesionless soil condition. Insights concerning the soil-pile interaction mechanisms are obtained based on the conducted analyses of the soil-pile foundation subsystems. Furthermore, numerical studies are conducted of long-span highway bridge-foundation systems under seismic loading conditions. Three-dimensional FE models of two existing bridges at Eureka California (the Samoa Channel Bridge and the Eureka Channel Bridge) are developed. Methodologies combining numerical modeling with insights gained from strong motion sensor records are investigated to capture the essential structure-foundation-ground system-response mechanisms. Focus is placed on the evaluation of dynamic properties and validation of the bridge FE models based on the recorded earthquake response. An optimization tool (SNOPT) is employed to evaluate the bridge foundation lateral stiffness. The studies show that computational modeling, along with analysis of the recorded ground-pile foundation data, provide an effective mechanism for understanding the entire structure-foundation-ground system response. The OpenSees platform and the user-interfaces OpenSeesPL, MSBridge, as well as SNOPT are employed in various sections of the study. In the domain of highly expensive and time consuming foundation design and/or retrofit, major beneficial outcomes can result from adoption of analysis tools which have been calibrated/verified by actual recorded seismic performance data sets.

Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations

Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations PDF Author: Ning Wang
Publisher:
ISBN: 9781321649284
Category :
Languages : en
Pages : 348

Get Book Here

Book Description
Continued advancements in high-speed computing and increased availability of earthquake strong motion data have been allowing for further progress in the area of soil-structure-interaction (SSI). Efforts in this dissertation are mainly concerned with three-dimensional (3D) computational analyses of pile foundations and bridge-foundation-ground systems. This includes Finite Element (FE) modeling of ground-pile foundation systems, documentation and assessment of recorded bridge strong motion data, and identification of dynamic bridge-foundation system characteristics. Currently, simplified approaches, such as p-y curves or the foundation stiffness matrix representation, are employed mainly when considering Soil-Structure-Interaction. However, there is much interest in more representative modeling techniques in order to improve our assessments of seismic pile foundation response. In an effort to address this challenge, 3D FE numerical investigations are conducted related to the response of piles and pile groups under lateral load. Distribution of loads and moments among the piles within the group is investigated. Effects of permeability and loading rate on lateral pile response are addressed for saturated relatively impervious cohesionless soil condition. Insights concerning the soil-pile interaction mechanisms are obtained based on the conducted analyses of the soil-pile foundation subsystems. Furthermore, numerical studies are conducted of long-span highway bridge-foundation systems under seismic loading conditions. Three-dimensional FE models of two existing bridges at Eureka California (the Samoa Channel Bridge and the Eureka Channel Bridge) are developed. Methodologies combining numerical modeling with insights gained from strong motion sensor records are investigated to capture the essential structure-foundation-ground system-response mechanisms. Focus is placed on the evaluation of dynamic properties and validation of the bridge FE models based on the recorded earthquake response. An optimization tool (SNOPT) is employed to evaluate the bridge foundation lateral stiffness. The studies show that computational modeling, along with analysis of the recorded ground-pile foundation data, provide an effective mechanism for understanding the entire structure-foundation-ground system response. The OpenSees platform and the user-interfaces OpenSeesPL, MSBridge, as well as SNOPT are employed in various sections of the study. In the domain of highly expensive and time consuming foundation design and/or retrofit, major beneficial outcomes can result from adoption of analysis tools which have been calibrated/verified by actual recorded seismic performance data sets.

Dynamics of Soil and Modelling of Geotechnical Problems

Dynamics of Soil and Modelling of Geotechnical Problems PDF Author: C. N. V. Satyanarayana Reddy
Publisher: Springer Nature
ISBN: 9811656053
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
This book provides information on the latest technological developments taking place in Geotechnical engineering, pertaining to Soil Dynamics and Modelling of Geotechnical Problems. The book is useful for the academicians and working professionals with coverage of both theoretical and practical aspects of Dynamics of Soil and Modelling studies on Geotechnical problems based on research findings and site specific inputs. The book serves as a useful reference resource for graduate and postgraduate students of civil engineering and contents of the book are helpful to the postgraduate students and research scholars in carrying out the research.

Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive Soil

Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive Soil PDF Author: Xingyi Wu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Expansive soils, which are widely referred to as problematic soils are extensively found in many countries of the world, especially in semi-arid and arid regions. Several billions of dollars are spent annually for maintenance or for repairs to the structures constructed with and within expansive soils. The major problems of expansive soils can be attributed to the volume changes associated with the alternate wetting and drying conditions due to the influence of environmental factors. Pile foundations have been widely accepted by practicing engineers as a reasonably good solution to reduce the damages to the structures constructed on expansive soils. Typically, piles foundations are extended through the active layer of expansive soil to reach the bedrock or placed on a soil-bearing stratum of good quality. Such a design and construction approach typically facilitates pile foundations to safely carry the loads from the superstructures and reduce the settlement. However, in many scenarios, damages associated with the pile foundations are due to the expansion of the soil that is predominantly in the active zone that contributes to the pile uplift. Such a behavior can be attributed to the water infiltration into the expansive soil, which is a key factor that is associated with the soil swelling. Due to this phenomenon, expansive soil typically moves upward with respect to the pile. This generates extra positive friction on the pile because of the relative deformation. If the superstructure is light or the applied normal stress on the head of the piles is not significant, it is likely that there will be an uplift of the pile contributing to the damage of the superstructure. In conventional engineering practice, the traditional design methods that include the rigid pile method and the elastic pile method are the most acceptable in pile foundation design. These methods are typically based on a computational technique that uses simplified assumptions with respect to soil and water content profile and the stiffness and shear strength properties. In other words, the traditional design method has limitations, as they do not take account of the complex hydromechanical behavior of the in-situ expansive soils. With the recent developments, it is possible to alleviate these limitations by using numerical modeling techniques such as finite element methods. In this thesis, a three-dimensional finite element method was used to study the hydro-mechanical behavior of a single pile in expansive soils during the infiltration process. In this thesis, a coupled hydro-mechanical model for the unsaturated expansive soil is implemented into Abaqus software for analysis of the behavior of single piles in expansive soils during water infiltration. A rigorous continuum mechanics based approach in terms of two independent stress state variables; namely, net normal stress and suction are used to form two three-dimensional constitutive surfaces for describing the changes in the void ratio and water content of unsaturated expansive soils. The elasticity parameters for soil structure and water content in unsaturated soil were obtained by differentiating the mathematical equations of constitutive surfaces. The seepage and stress-deformation of expansive soil are described by the coupled hydro-mechanical model and the Darcy's law. To develop the subroutines, the coupled hydro-mechanical model is transferred into the coupled thermal-mechanical model. Five user-material subroutines are used in this program. The user-defined field subroutine (USDFILD) in Abaqus is used to change and transfer parameters. Three subroutines including user-defined material subroutine (UMAT), user-defined thermal material subroutine (UMATHT), and user-defined thermal expansion subroutine (UEXPAN) are developed and used to calculate the stress-deformation, the hydraulic behavior, and the expansion strain, respectively. Except for the coupled hydro-mechanical model of unsaturated expansive soils, a soil-structure interface model is implemented into the user-defined friction behavior subroutine (FRIC) to calculate the friction between soil and pile. The program is verified by using an experimental study on a single pile in Regina clay. The results show that for the single pile in expansive soil under a vertical load, water infiltration can cause a reduction in the pile shaft friction. More pile head load is transferred to the pile at greater depth, which increases the pile head settlement and pile base resistance. In future, the proposed method can also be extended for verification of other case studies from the literature. In addition, complex scenarios can be investigated to understand the behavior of piles in expansive soils.

Seismic Performance of Soil-Foundation-Structure Systems

Seismic Performance of Soil-Foundation-Structure Systems PDF Author: Nawawi Chouw
Publisher: CRC Press
ISBN: 1351665693
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book Here

Book Description
Seismic Performance of Soil-Foundation-Structure Systems presents invited papers presented at the international workshop (University of Auckland, New Zealand, 21-22 November 2016). This international workshop brought together outstanding work in earthquake engineering that embraces a holistic consideration of soilfoundation-structure systems. For example, the diversity of papers in this volume is represented by contributions from the fields of shallow foundation in liquefiable soil, spatially distributed lifelines, bridges, clustered structures (see photo on front cover), sea floor seismic motion, multi-axial ground excitation, deep foundations, soil-foundation-structurefluid interaction, liquefaction-induced settlement and uplift with SFSI. A fundamental knowledge gap is manifested by the isolated manner geotechnical and structural engineers work. A holistic consideration of soil-foundation-structures systems is only possible if civil engineers work collaboratively to the mutual benefit of all disciplines. Another gap occurs by the retarded application of up-to-date research findings in engineering design practices. Seismic Performance of Soil-Foundation-Structure Systems is the outcome from the recognized need to close this gap, since it has been observed that a considerable delay exists between published research findings and application of the principles revealed by the research. Seismic Performance of Soil-Foundation-Structure Systems will be helpful in developing more understanding of the complex nature of responses these systems present under strong earthquakes, and will assist engineers in closing the gaps identified above.

Challenges and Innovations in Geomechanics

Challenges and Innovations in Geomechanics PDF Author: Marco Barla
Publisher: Springer Nature
ISBN: 3030645142
Category : Science
Languages : en
Pages : 1029

Get Book Here

Book Description
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.

Theory and Practice in Earthquake Engineering and Technology

Theory and Practice in Earthquake Engineering and Technology PDF Author: T. G. Sitharam
Publisher: Springer Nature
ISBN: 9811923248
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
This book contains diverse topics relevant to earthquake engineering and technology. The chapters are of interest to readers from various disciplines, as the different chapters discuss popular topics on earthquake engineering and allied disciplines. The chapters have adequate illustrations and tables for clarifying underlying concepts. The reader can understand the fundamental concepts easily, and the book is highly useful for practice in the field in addition to classroom learning.

Proceedings of the 2024 3rd International Conference on Structural Seismic Resistance, Monitoring and Detection (SSRMD 2024)

Proceedings of the 2024 3rd International Conference on Structural Seismic Resistance, Monitoring and Detection (SSRMD 2024) PDF Author: ABHIJIT MOHANRAO ZENDE; YONGDING TIAN; LINGKUN CHE.
Publisher: Springer Nature
ISBN: 9464634049
Category :
Languages : en
Pages : 395

Get Book Here

Book Description


Parameter Study to Assess 3D Geometric Effects on Bridge Foundation Response Resulting from Liquefaction-induced Lateral Spreading Demands

Parameter Study to Assess 3D Geometric Effects on Bridge Foundation Response Resulting from Liquefaction-induced Lateral Spreading Demands PDF Author: Partha Sarathi Bhattacharjee
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages :

Get Book Here

Book Description


Seismic Design and Performance

Seismic Design and Performance PDF Author: T.G. Sitharam
Publisher: Springer Nature
ISBN: 9813340053
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include seismic design of deep & shallow foundations, soil structure interaction under dynamic loading, marine structures, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.

The Shock and Vibration Digest

The Shock and Vibration Digest PDF Author:
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 748

Get Book Here

Book Description