Three-Dimensional Electromagnetics

Three-Dimensional Electromagnetics PDF Author: P.E. Wannamaker
Publisher: Elsevier
ISBN: 0080542999
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
"3-D modeling and inversion is a reality, and not an illusion." This is the clear conclusion of the Second International Symposium on Three-Dimensional Electromagnetics held at the University of Utah in 1999. Containing papers submitted by 36 authors, this volume, by the sheer number of works, their diversity, and the truly international character of the efforts attests to the vigor with which the problems of the field are pursued today.The papers in this book are grouped in three parts: 3-D EM modeling; 3-D EM inversion; and 3-D EM in practice. They cover a wide range of topics in forward modeling and inversion based on new fast approximate approaches and new efficient solutions by integral equation, finite difference and finite elements techniques. If the 1980s were the decade of rapid development in 3D seismics, the 1990s became the decade of growing interest of practical geophysicists in 3D EM modeling and inversion methods.The contributions contained in this volume represent a snapshot of today's state-of-the-art in three-dimensional electromagnetics.

Three-Dimensional Electromagnetics

Three-Dimensional Electromagnetics PDF Author: P.E. Wannamaker
Publisher: Elsevier
ISBN: 0080542999
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
"3-D modeling and inversion is a reality, and not an illusion." This is the clear conclusion of the Second International Symposium on Three-Dimensional Electromagnetics held at the University of Utah in 1999. Containing papers submitted by 36 authors, this volume, by the sheer number of works, their diversity, and the truly international character of the efforts attests to the vigor with which the problems of the field are pursued today.The papers in this book are grouped in three parts: 3-D EM modeling; 3-D EM inversion; and 3-D EM in practice. They cover a wide range of topics in forward modeling and inversion based on new fast approximate approaches and new efficient solutions by integral equation, finite difference and finite elements techniques. If the 1980s were the decade of rapid development in 3D seismics, the 1990s became the decade of growing interest of practical geophysicists in 3D EM modeling and inversion methods.The contributions contained in this volume represent a snapshot of today's state-of-the-art in three-dimensional electromagnetics.

Three-dimensional Electromagnetics

Three-dimensional Electromagnetics PDF Author: Michael L. Oristaglio
Publisher: SEG Books
ISBN: 1560800798
Category : Science
Languages : en
Pages : 720

Get Book Here

Book Description
This book covers major techniques used to compute, analyze, visualize, and understand 3D electromagnetic fields in every major application of electrical geophysics. The 44 papers, written especially for this volume, are divided between techniques of 3D modeling and inversion (21 papers) and applications (23 papers). The latter include exploration for minerals and hydrocarbons, regional crustal studies, and environmental surveys. These contributions represent the work of 95 authors from 56 institutions in 13 countries.

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® PDF Author: Raymond C. Rumpf
Publisher: Artech House
ISBN: 1630819271
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Computational Methods in Geophysical Electromagnetics

Computational Methods in Geophysical Electromagnetics PDF Author: Eldad Haber
Publisher: SIAM
ISBN: 1611973805
Category : Science
Languages : en
Pages : 148

Get Book Here

Book Description
This monograph provides a framework for students and practitioners who are working on the solution of electromagnetic imaging in geophysics. Bridging the gap between theory and practical applied material (for example, inverse and forward problems), it provides a simple explanation of finite volume discretization, basic concepts in solving inverse problems through optimization, a summary of applied electromagnetics methods, and MATLAB??code for efficient computation.

Computational Geo-Electromagnetics

Computational Geo-Electromagnetics PDF Author: Viacheslav V. Spichak
Publisher: Elsevier
ISBN: 0128196319
Category : Science
Languages : en
Pages : 462

Get Book Here

Book Description
Computational Geo-Electromagnetics: Methods, Models, and Forecasts, Volume Five in the Computational Geophysics series, is devoted to techniques for building of geoelectrical models from electromagnetic data, featuring Bayesian statistical analysis and neural network algorithms. These models are applied to studying the geoelectrical structure of famous volcanoes (i.e., Vesuvio, Kilauea, Elbrus, Komagatake, Hengill) and geothermal zones (i.e., Travale, Italy; Soultz-sous-Forets, Elsace). Methodological recommendations are given on electromagnetic sounding of faults as well as geothermal and hydrocarbon reservoirs. Techniques for forecasting of petrophysical properties from the electrical resistivity as proxy parameter are also considered. Computational Geo-Electromagnetics: Methods, Models, and Forecasts offers techniques and algorithms for building geoelectrical models under conditions of rare or irregularly distributed EM data and/or lack of prior geological and geophysical information. This volume also includes methodological guidelines on interpretation of electromagnetic sounding data depending on goals of the study. Finally, it details computational algorithms for using electrical resistivity for properties beyond boreholes.

Electromagnetic Theory and Computation

Electromagnetic Theory and Computation PDF Author: Paul W. Gross
Publisher: Cambridge University Press
ISBN: 9780521801607
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.

Electromagnetic Sounding of the Earth's Interior

Electromagnetic Sounding of the Earth's Interior PDF Author: Viacheslav V. Spichak
Publisher: Elsevier
ISBN: 0444635572
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. - Presents recently developed methodological findings of the earth's study, including seismoelectrical and renewed magnetovariational approaches - Provides methodological guidelines for Electromagnetic data interpretation in various geological environments - Contains a balanced set of lectures covering all aspects of Electromagnetic sounding at global, regional and local levels along with case studies, highlighting the practical importance of electromagnetic data - Updates current findings in the field, in particular MT, magnetovariational and seismo-electrical methods and the practice of 3D interpretations

Electromagnetic Simulation Using the FDTD Method

Electromagnetic Simulation Using the FDTD Method PDF Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 1118646630
Category : Science
Languages : en
Pages : 169

Get Book Here

Book Description
A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Introduction to Engineering Electromagnetics

Introduction to Engineering Electromagnetics PDF Author: Yeon Ho Lee
Publisher: Springer Science & Business Media
ISBN: 3642361188
Category : Technology & Engineering
Languages : en
Pages : 570

Get Book Here

Book Description
This text provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This text includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.

Computational Methods for Electromagnetics

Computational Methods for Electromagnetics PDF Author: Andrew F. Peterson
Publisher: Universities Press
ISBN: 9788173713774
Category : Electromagnetism
Languages : en
Pages : 600

Get Book Here

Book Description
This book is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment, Employing a unified and coherent approach that is unmatched in the field, the authors deatil both integral and differential equations using the method-of-moments and finite-element procedures.