Author: P.M. Schweizer
Publisher: Springer Science & Business Media
ISBN: 9401153426
Category : Science
Languages : en
Pages : 794
Book Description
This multi-authored volume provides a comprehensive and in-depth account of the highly interdisciplinary science and technology of liquid film coating. The book covers fundamental principles from a wide range of scientific disciplines, including fluid mechanics aand transport phenomena, capillary hydrodynamics, surface and colloid science. The authors, all acknowledged eperts in their fields, represent a balance between industrial and academic points of view. Throughout the text, many case studies illustrate how scientific principles together with advanced experimental and theoretical methods are applied to develop and optimize manufacturing processes of eve increasing sophiatication and efficiency. In the first part of the book, the authors systematically recount the underlying physical principles and important material properties. The second part of the book gives a comprehensive overview of the most advanced experimental, mathematical and computational methods available today to investigate coating processes. The third part provides an overview and critical literature review for all major classes of liquid film coating processes of industrial importance.
Liquid Film Coating
Author: P.M. Schweizer
Publisher: Springer Science & Business Media
ISBN: 9401153426
Category : Science
Languages : en
Pages : 794
Book Description
This multi-authored volume provides a comprehensive and in-depth account of the highly interdisciplinary science and technology of liquid film coating. The book covers fundamental principles from a wide range of scientific disciplines, including fluid mechanics aand transport phenomena, capillary hydrodynamics, surface and colloid science. The authors, all acknowledged eperts in their fields, represent a balance between industrial and academic points of view. Throughout the text, many case studies illustrate how scientific principles together with advanced experimental and theoretical methods are applied to develop and optimize manufacturing processes of eve increasing sophiatication and efficiency. In the first part of the book, the authors systematically recount the underlying physical principles and important material properties. The second part of the book gives a comprehensive overview of the most advanced experimental, mathematical and computational methods available today to investigate coating processes. The third part provides an overview and critical literature review for all major classes of liquid film coating processes of industrial importance.
Publisher: Springer Science & Business Media
ISBN: 9401153426
Category : Science
Languages : en
Pages : 794
Book Description
This multi-authored volume provides a comprehensive and in-depth account of the highly interdisciplinary science and technology of liquid film coating. The book covers fundamental principles from a wide range of scientific disciplines, including fluid mechanics aand transport phenomena, capillary hydrodynamics, surface and colloid science. The authors, all acknowledged eperts in their fields, represent a balance between industrial and academic points of view. Throughout the text, many case studies illustrate how scientific principles together with advanced experimental and theoretical methods are applied to develop and optimize manufacturing processes of eve increasing sophiatication and efficiency. In the first part of the book, the authors systematically recount the underlying physical principles and important material properties. The second part of the book gives a comprehensive overview of the most advanced experimental, mathematical and computational methods available today to investigate coating processes. The third part provides an overview and critical literature review for all major classes of liquid film coating processes of industrial importance.
Thin Liquid Films and Coating Processes
Author: J-M. Buchlin
Publisher:
ISBN:
Category : Coating processes
Languages : en
Pages : 524
Book Description
Publisher:
ISBN:
Category : Coating processes
Languages : en
Pages : 524
Book Description
Thin Liquid Films and Coating Processes
Author: American Institute of Aeronautics & Astronautics
Publisher:
ISBN: 9781563473289
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781563473289
Category :
Languages : en
Pages :
Book Description
Handbook of Deposition Technologies for Films and Coatings
Author: Peter M. Martin
Publisher: William Andrew
ISBN: 0815520328
Category : Technology & Engineering
Languages : en
Pages : 932
Book Description
This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.
Publisher: William Andrew
ISBN: 0815520328
Category : Technology & Engineering
Languages : en
Pages : 932
Book Description
This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.
Chemical Solution Deposition of Functional Oxide Thin Films
Author: Theodor Schneller
Publisher: Springer Science & Business Media
ISBN: 3211993118
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.
Publisher: Springer Science & Business Media
ISBN: 3211993118
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.
Thin Liquid Films
Author: Ivan Ivanov
Publisher: Taylor & Francis
ISBN: 1351408194
Category : Science
Languages : en
Pages : 1152
Book Description
This comprehensive reference provided a systematic examination of both the theory and applications of thin liquid films - giving a critical review of major concepts and unresolved or controversial problems, as well as revealing experimental methods. It includes results previously unpublished. Combining the work of 20 leading researchers, Thin Liquid Films furnishes a fundamental overview of thermodynamics of thin liquid films. Generously illustrated with equations, tables and drawling and containing more than 2,200 citations to pertinent literature, this is an authoritative reference for physical, surface, and colloid chemists, biophysicists and physicists; chemical engineers and advanced graduate students in chemistry, chemical engineering, biophysics and physics.
Publisher: Taylor & Francis
ISBN: 1351408194
Category : Science
Languages : en
Pages : 1152
Book Description
This comprehensive reference provided a systematic examination of both the theory and applications of thin liquid films - giving a critical review of major concepts and unresolved or controversial problems, as well as revealing experimental methods. It includes results previously unpublished. Combining the work of 20 leading researchers, Thin Liquid Films furnishes a fundamental overview of thermodynamics of thin liquid films. Generously illustrated with equations, tables and drawling and containing more than 2,200 citations to pertinent literature, this is an authoritative reference for physical, surface, and colloid chemists, biophysicists and physicists; chemical engineers and advanced graduate students in chemistry, chemical engineering, biophysics and physics.
Sol-Gel Technologies for Glass Producers and Users
Author: Michel Andre Aegerter
Publisher: Springer Science & Business Media
ISBN: 0387889531
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.
Publisher: Springer Science & Business Media
ISBN: 0387889531
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.
Thin Films and Coatings in Biology
Author: Soroush Nazarpour
Publisher: Springer Science & Business Media
ISBN: 9400725922
Category : Science
Languages : en
Pages : 367
Book Description
The surface of materials is routinely exposed to various environmental influences. Surface modification presents a technological challenge for material scientists, physicists, and engineers, particularly when those surfaces are subjected to function within human body environment. This book provides a comprehensive coverage of the major issues and topics dealing with interaction of soft living matter with the surface of implants. Fundamental scientific concepts are embedded through experimental data and a broad range of case studies. First chapters cover the basics on biocompatibility of many different thin films of metals, alloys, ceramics, hydrogels, and polymers, following with case studies dealing with orthopedic and dental coatings. Next, a novel and low-cost coating deposition technique capable of production of several types of nanostructures is introduced through simple calculations and several illustrations. Moreover, chapter 6 and 7 present important topics on surface treatment of polymers, which is a subject that has seen many developments over the past decade. The last chapters target mainly the applications of coatings in biology such as in bio-sensing, neuroscience, and cancer detection. With several illustrations, micrographs, and case studies along with suitable references in each chapter, this book will be essential for graduate students and researchers in the multidisciplinary field of bio-coatings.
Publisher: Springer Science & Business Media
ISBN: 9400725922
Category : Science
Languages : en
Pages : 367
Book Description
The surface of materials is routinely exposed to various environmental influences. Surface modification presents a technological challenge for material scientists, physicists, and engineers, particularly when those surfaces are subjected to function within human body environment. This book provides a comprehensive coverage of the major issues and topics dealing with interaction of soft living matter with the surface of implants. Fundamental scientific concepts are embedded through experimental data and a broad range of case studies. First chapters cover the basics on biocompatibility of many different thin films of metals, alloys, ceramics, hydrogels, and polymers, following with case studies dealing with orthopedic and dental coatings. Next, a novel and low-cost coating deposition technique capable of production of several types of nanostructures is introduced through simple calculations and several illustrations. Moreover, chapter 6 and 7 present important topics on surface treatment of polymers, which is a subject that has seen many developments over the past decade. The last chapters target mainly the applications of coatings in biology such as in bio-sensing, neuroscience, and cancer detection. With several illustrations, micrographs, and case studies along with suitable references in each chapter, this book will be essential for graduate students and researchers in the multidisciplinary field of bio-coatings.
Methods for Film Synthesis and Coating Procedures
Author: Laszlo Nanai
Publisher: Intechopen
ISBN: 1789855667
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
In recent years, thin layer technologies, including fabrication of different micro- and nano-structures, have undergone tremendous progress. Such layers are made for a variety of industrial and scientific applications. Due to the extreme physico-chemical properties of the available structures, there are many promising applications (eg, due to biocompatibility, biological and medical applications between living tissues and materials). Pre-tailored special surface layers/structures could be realized for implants in dental, neurological and orthopedic applications. There are also different methods that have been applied to produce special mono and multilayers with extreme electrical end magnetic properties. Also some methods have been developed to produce surface structure applications eg, for environmental applications with necessary resistivity and anti-corrosion properties.Some theoretical/mathematical simulation methods have also been developed for better compatibility of theory with experiments.This book consists of 10 chapters describing the physico-chemical base of deposition and coating microfabrication, thus providing some overview on how to measure the physical and chemical parameters of fabricated structures and how to solve compatibility and fitting problems, etc.
Publisher: Intechopen
ISBN: 1789855667
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
In recent years, thin layer technologies, including fabrication of different micro- and nano-structures, have undergone tremendous progress. Such layers are made for a variety of industrial and scientific applications. Due to the extreme physico-chemical properties of the available structures, there are many promising applications (eg, due to biocompatibility, biological and medical applications between living tissues and materials). Pre-tailored special surface layers/structures could be realized for implants in dental, neurological and orthopedic applications. There are also different methods that have been applied to produce special mono and multilayers with extreme electrical end magnetic properties. Also some methods have been developed to produce surface structure applications eg, for environmental applications with necessary resistivity and anti-corrosion properties.Some theoretical/mathematical simulation methods have also been developed for better compatibility of theory with experiments.This book consists of 10 chapters describing the physico-chemical base of deposition and coating microfabrication, thus providing some overview on how to measure the physical and chemical parameters of fabricated structures and how to solve compatibility and fitting problems, etc.
Thin Liquid Films
Author: Ralf Blossey
Publisher: Springer Science & Business Media
ISBN: 9400744552
Category : Science
Languages : en
Pages : 158
Book Description
This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films (sometimes referred to as “ultrathin”) have proven to be an invaluable experimental model system. What is it that makes thin film instabilities special and interesting? First, thin polymeric films have an important range of applications. An understanding of their instabilities is therefore of practical relevance for the design of such films. The first chapter of the book intends to give a snapshot of current applications, and an outlook on promising future ones. Second, thin liquid films are an interdisciplinary research topic, which leads to a fairly heterogeneous community working on the topic. It justifies attempting to write a text which gives a coherent presentation of the field which researchers across their specialized communities might be interested in. Finally, thin liquid films are an interesting laboratory for a theorist to confront a well-established theory, hydrodynamics, with its limits. Thin films are therefore a field in which a highly fruitful exchange and collaboration exists between experimentalists and theorists. The book stretches from the more concrete to more abstract levels of study: we roughly progress from applications via theory and experiment to rigorous mathematical theory. For an experimental scientist, the book should serve as a reference and guide to what is the current consensus of the theoretical underpinnings of the field of thin film dynamics. Controversial problems on which such a consensus has not yet been reached are clearly indicated in the text, as well as discussed in a final chapter. From a theoretical point of view, the field of dewetting has mainly been treated in a mathematically ‘light’ yet elegant fashion, often making use of scaling arguments. For the untrained researcher, this approach is not always easy to follow. The present book attempts to bridge between the ‘light’ and the ‘rigorous’, always with the ambition to enhance insight and understanding - and to not let go the elegance of the theory.
Publisher: Springer Science & Business Media
ISBN: 9400744552
Category : Science
Languages : en
Pages : 158
Book Description
This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films (sometimes referred to as “ultrathin”) have proven to be an invaluable experimental model system. What is it that makes thin film instabilities special and interesting? First, thin polymeric films have an important range of applications. An understanding of their instabilities is therefore of practical relevance for the design of such films. The first chapter of the book intends to give a snapshot of current applications, and an outlook on promising future ones. Second, thin liquid films are an interdisciplinary research topic, which leads to a fairly heterogeneous community working on the topic. It justifies attempting to write a text which gives a coherent presentation of the field which researchers across their specialized communities might be interested in. Finally, thin liquid films are an interesting laboratory for a theorist to confront a well-established theory, hydrodynamics, with its limits. Thin films are therefore a field in which a highly fruitful exchange and collaboration exists between experimentalists and theorists. The book stretches from the more concrete to more abstract levels of study: we roughly progress from applications via theory and experiment to rigorous mathematical theory. For an experimental scientist, the book should serve as a reference and guide to what is the current consensus of the theoretical underpinnings of the field of thin film dynamics. Controversial problems on which such a consensus has not yet been reached are clearly indicated in the text, as well as discussed in a final chapter. From a theoretical point of view, the field of dewetting has mainly been treated in a mathematically ‘light’ yet elegant fashion, often making use of scaling arguments. For the untrained researcher, this approach is not always easy to follow. The present book attempts to bridge between the ‘light’ and the ‘rigorous’, always with the ambition to enhance insight and understanding - and to not let go the elegance of the theory.