Author: Jean-Michel Bergheau
Publisher: John Wiley & Sons
ISBN: 1118578805
Category : Mathematics
Languages : en
Pages : 364
Book Description
The numerical simulation of manufacturing processes and of their mechanical consequences is of growing interest in industry. However, such simulations need the modeling of couplings between several physical phenomena such as heat transfer, material transformations and solid or fluid mechanics, as well as to be adapted to numerical methodologies. This book gathers a state of the art on how to simulate industrial processes, what data are needed and what numerical simulation can bring. Assembling processes such as welding and friction stir welding, material removal processes, elaboration processes of composite structures, sintering processes, surface-finishing techniques, and thermo-chemical treatments are investigated. This book is the work of a group of researchers who have been working together in this field for more than 12 years. It should prove useful for both those working in industry and those studying the numerical methods applied to multiphysics problems encountered in manufacturing processes.
Thermomechanical Industrial Processes
Author: Jean-Michel Bergheau
Publisher: John Wiley & Sons
ISBN: 1118578805
Category : Mathematics
Languages : en
Pages : 364
Book Description
The numerical simulation of manufacturing processes and of their mechanical consequences is of growing interest in industry. However, such simulations need the modeling of couplings between several physical phenomena such as heat transfer, material transformations and solid or fluid mechanics, as well as to be adapted to numerical methodologies. This book gathers a state of the art on how to simulate industrial processes, what data are needed and what numerical simulation can bring. Assembling processes such as welding and friction stir welding, material removal processes, elaboration processes of composite structures, sintering processes, surface-finishing techniques, and thermo-chemical treatments are investigated. This book is the work of a group of researchers who have been working together in this field for more than 12 years. It should prove useful for both those working in industry and those studying the numerical methods applied to multiphysics problems encountered in manufacturing processes.
Publisher: John Wiley & Sons
ISBN: 1118578805
Category : Mathematics
Languages : en
Pages : 364
Book Description
The numerical simulation of manufacturing processes and of their mechanical consequences is of growing interest in industry. However, such simulations need the modeling of couplings between several physical phenomena such as heat transfer, material transformations and solid or fluid mechanics, as well as to be adapted to numerical methodologies. This book gathers a state of the art on how to simulate industrial processes, what data are needed and what numerical simulation can bring. Assembling processes such as welding and friction stir welding, material removal processes, elaboration processes of composite structures, sintering processes, surface-finishing techniques, and thermo-chemical treatments are investigated. This book is the work of a group of researchers who have been working together in this field for more than 12 years. It should prove useful for both those working in industry and those studying the numerical methods applied to multiphysics problems encountered in manufacturing processes.
Thermo-Mechanical Modeling of Additive Manufacturing
Author: Michael Gouge
Publisher: Butterworth-Heinemann
ISBN: 0128118210
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produce geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building. - Provides understanding of important components in the finite element modeling of additive manufacturing processes necessary to obtain accurate results - Offers a deeper understanding of how the thermal gradients inherent in additive manufacturing induce distortion and residual stresses, and how to mitigate these undesirable phenomena - Includes a set of strategies for the modeler to improve computational efficiency when simulating various additive manufacturing processes - Serves as an essential reference for engineers and technicians in both industry and academia
Publisher: Butterworth-Heinemann
ISBN: 0128118210
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produce geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building. - Provides understanding of important components in the finite element modeling of additive manufacturing processes necessary to obtain accurate results - Offers a deeper understanding of how the thermal gradients inherent in additive manufacturing induce distortion and residual stresses, and how to mitigate these undesirable phenomena - Includes a set of strategies for the modeler to improve computational efficiency when simulating various additive manufacturing processes - Serves as an essential reference for engineers and technicians in both industry and academia
Thermo-Mechanical Processing of Metallic Materials
Author: Bert Verlinden
Publisher: Elsevier
ISBN: 0080544487
Category : Technology & Engineering
Languages : en
Pages : 551
Book Description
Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing* Links basic science to real everyday applications* Written by four internationally-known experts in the field
Publisher: Elsevier
ISBN: 0080544487
Category : Technology & Engineering
Languages : en
Pages : 551
Book Description
Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing* Links basic science to real everyday applications* Written by four internationally-known experts in the field
Theory of Thermomechanical Processes in Welding
Author: Andrzej Sluzalec
Publisher: Springer Science & Business Media
ISBN: 1402029918
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.
Publisher: Springer Science & Business Media
ISBN: 1402029918
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.
Unit Manufacturing Processes
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Metallurgy and Design of Alloys with Hierarchical Microstructures
Author: Krishnan K. Sankaran
Publisher: Elsevier
ISBN: 0128120258
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
Publisher: Elsevier
ISBN: 0128120258
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
Modern Manufacturing Processes
Author: Muammer Koç
Publisher: John Wiley & Sons
ISBN: 1118071921
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.
Publisher: John Wiley & Sons
ISBN: 1118071921
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.
The Handbook of Polyhydroxyalkanoates
Author: Martin Koller
Publisher: CRC Press
ISBN: 1000173577
Category : Medical
Languages : en
Pages : 453
Book Description
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
Publisher: CRC Press
ISBN: 1000173577
Category : Medical
Languages : en
Pages : 453
Book Description
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
Modeling of Thermo-Electro-Mechanical Manufacturing Processes
Author: C. V. Nielsen
Publisher: Springer Science & Business Media
ISBN: 1447146425
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding provides readers with a basic understanding of the fundamental ingredients in plasticity, heat transfer and electricity that are necessary to develop and proper utilize computer programs based on the finite element flow formulation. Computer implementation of a wide range of theoretical and numerical subjects related to mesh generation, contact algorithms, elasticity, anisotropic constitutive equations, solution procedures and parallelization of equation solvers is comprehensively described. Illustrated and enriched with selected examples obtained from industrial applications, Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding works to diminish the gap between the developers of finite element computer programs and the professional engineers with expertise in industrial joining technologies by metal forming and resistance welding.
Publisher: Springer Science & Business Media
ISBN: 1447146425
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding provides readers with a basic understanding of the fundamental ingredients in plasticity, heat transfer and electricity that are necessary to develop and proper utilize computer programs based on the finite element flow formulation. Computer implementation of a wide range of theoretical and numerical subjects related to mesh generation, contact algorithms, elasticity, anisotropic constitutive equations, solution procedures and parallelization of equation solvers is comprehensively described. Illustrated and enriched with selected examples obtained from industrial applications, Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding works to diminish the gap between the developers of finite element computer programs and the professional engineers with expertise in industrial joining technologies by metal forming and resistance welding.
Thermomechanical Processing of Steels
Author: Jose M. Rodriguez-Ibabe
Publisher: MDPI
ISBN: 3039433547
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.
Publisher: MDPI
ISBN: 3039433547
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.