Author: Don S. Lemons
Publisher: MIT Press
ISBN: 0262538946
Category : Science
Languages : en
Pages : 192
Book Description
An account of the concepts and intellectual structure of classical thermodynamics that reveals the subject's simplicity and coherence. Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods—a “problems first” approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness, Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian “weirdness.” By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as “the only physical theory of universal content which I am convinced will never be overthrown.”
Thermodynamic Weirdness
Author: Don S. Lemons
Publisher: MIT Press
ISBN: 0262538946
Category : Science
Languages : en
Pages : 192
Book Description
An account of the concepts and intellectual structure of classical thermodynamics that reveals the subject's simplicity and coherence. Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods—a “problems first” approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness, Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian “weirdness.” By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as “the only physical theory of universal content which I am convinced will never be overthrown.”
Publisher: MIT Press
ISBN: 0262538946
Category : Science
Languages : en
Pages : 192
Book Description
An account of the concepts and intellectual structure of classical thermodynamics that reveals the subject's simplicity and coherence. Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods—a “problems first” approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness, Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian “weirdness.” By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as “the only physical theory of universal content which I am convinced will never be overthrown.”
Thermodynamic Weirdness
Author: Don Stephen Lemons
Publisher:
ISBN: 9780262351324
Category : Thermodynamics
Languages : en
Pages : 192
Book Description
An account of the concepts and intellectual structure of classical thermodynamics that reveals the subject's simplicity and coherence. Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods--a "problems first" approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness , Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian "weirdness." By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as the "only physical theory of universal content which I am convinced will never be overthrown.".
Publisher:
ISBN: 9780262351324
Category : Thermodynamics
Languages : en
Pages : 192
Book Description
An account of the concepts and intellectual structure of classical thermodynamics that reveals the subject's simplicity and coherence. Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods--a "problems first" approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness , Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian "weirdness." By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as the "only physical theory of universal content which I am convinced will never be overthrown.".
Entropy and the Second Law of Thermodynamics
Author: Robert Fleck
Publisher: Springer Nature
ISBN: 3031349504
Category : Science
Languages : en
Pages : 135
Book Description
This book is a brief and accessible popular science text intended for a broad audience and of particular interest also to science students and specialists. Using a minimum of mathematics, a number of qualitative and quantitative examples, and clear illustrations, the author explains the science of thermodynamics in its full historical context, focusing on the concepts of energy and its availability and transformation in thermodynamic processes. His ultimate aim is to gain a deep understanding of the second law—the increase of entropy—and its rather disheartening message of a universe descending inexorably into chaos and disorder. It also examines the connection between the second law and why things go wrong in our daily lives. Readers will enhance their science literacy and feel more at home on the science side of author C. P. Snow's celebrated two-culture, science-humanities divide, and hopefully will feel more at home in the universe knowing that the disorder we deal with in our daily lives is not anyone's fault but Nature's.
Publisher: Springer Nature
ISBN: 3031349504
Category : Science
Languages : en
Pages : 135
Book Description
This book is a brief and accessible popular science text intended for a broad audience and of particular interest also to science students and specialists. Using a minimum of mathematics, a number of qualitative and quantitative examples, and clear illustrations, the author explains the science of thermodynamics in its full historical context, focusing on the concepts of energy and its availability and transformation in thermodynamic processes. His ultimate aim is to gain a deep understanding of the second law—the increase of entropy—and its rather disheartening message of a universe descending inexorably into chaos and disorder. It also examines the connection between the second law and why things go wrong in our daily lives. Readers will enhance their science literacy and feel more at home on the science side of author C. P. Snow's celebrated two-culture, science-humanities divide, and hopefully will feel more at home in the universe knowing that the disorder we deal with in our daily lives is not anyone's fault but Nature's.
Information Theory
Author: Bertrand Duplantier
Publisher: Springer Nature
ISBN: 3030814807
Category : Science
Languages : en
Pages : 209
Book Description
This eighteenth volume in the Poincaré Seminar Series provides a thorough description of Information Theory and some of its most active areas, in particular, its relation to thermodynamics at the nanoscale and the Maxwell Demon, and the emergence of quantum computation and of its counterpart, quantum verification. It also includes two introductory tutorials, one on the fundamental relation between thermodynamics and information theory, and a primer on Shannon's entropy and information theory. The book offers a unique and manifold perspective on recent mathematical and physical developments in this field.
Publisher: Springer Nature
ISBN: 3030814807
Category : Science
Languages : en
Pages : 209
Book Description
This eighteenth volume in the Poincaré Seminar Series provides a thorough description of Information Theory and some of its most active areas, in particular, its relation to thermodynamics at the nanoscale and the Maxwell Demon, and the emergence of quantum computation and of its counterpart, quantum verification. It also includes two introductory tutorials, one on the fundamental relation between thermodynamics and information theory, and a primer on Shannon's entropy and information theory. The book offers a unique and manifold perspective on recent mathematical and physical developments in this field.
The Failures of Mathematical Anti-Evolutionism
Author: Jason Rosenhouse
Publisher: Cambridge University Press
ISBN: 1108842305
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book refutes anti-scientific, superficially mathematical arguments used to support anti-evolutionism in language accessible for both lay and professional audiences.
Publisher: Cambridge University Press
ISBN: 1108842305
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book refutes anti-scientific, superficially mathematical arguments used to support anti-evolutionism in language accessible for both lay and professional audiences.
The Janus Point
Author: Julian Barbour
Publisher: Basic Books
ISBN: 0465095496
Category : Science
Languages : en
Pages : 388
Book Description
In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
Publisher: Basic Books
ISBN: 0465095496
Category : Science
Languages : en
Pages : 388
Book Description
In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
The Equations of Materials
Author: Brian Cantor
Publisher:
ISBN: 0198851871
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book describes some of the important equations of materials and the scientists who derived them. The text is readable and enjoyable, and is aimed at anyone interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites.
Publisher:
ISBN: 0198851871
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book describes some of the important equations of materials and the scientists who derived them. The text is readable and enjoyable, and is aimed at anyone interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites.
Understanding Thermodynamics
Author: H.C. Van Ness
Publisher: Courier Corporation
ISBN: 0486132285
Category : Science
Languages : en
Pages : 129
Book Description
Clear treatment of systems and first and second laws of thermodynamics features informal language, vivid and lively examples, and fresh perspectives. Excellent supplement for undergraduate science or engineering class.
Publisher: Courier Corporation
ISBN: 0486132285
Category : Science
Languages : en
Pages : 129
Book Description
Clear treatment of systems and first and second laws of thermodynamics features informal language, vivid and lively examples, and fresh perspectives. Excellent supplement for undergraduate science or engineering class.
Anxiety and the Equation
Author: Eric Johnson
Publisher: MIT Press
ISBN: 0262038617
Category : Science
Languages : en
Pages : 193
Book Description
A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.
Publisher: MIT Press
ISBN: 0262038617
Category : Science
Languages : en
Pages : 193
Book Description
A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.
Rise of the Time Lords: A Geek's Guide to Christianity
Author: Michael Belote
Publisher: Lulu.com
ISBN: 1300020229
Category : Religion
Languages : en
Pages : 188
Book Description
Rise of the Time Lords: A Geek's Guide to Christianity is the debut novel by popular blogger and professional engineer Michael Belote. In it, Belote shares the Gospel for the Geeks: how we can learn about the Trinity from a Pringles can, heaven from Doctor Who, grace from air conditioners, and the nature of man from Schrodinger's cat.
Publisher: Lulu.com
ISBN: 1300020229
Category : Religion
Languages : en
Pages : 188
Book Description
Rise of the Time Lords: A Geek's Guide to Christianity is the debut novel by popular blogger and professional engineer Michael Belote. In it, Belote shares the Gospel for the Geeks: how we can learn about the Trinity from a Pringles can, heaven from Doctor Who, grace from air conditioners, and the nature of man from Schrodinger's cat.