Thermodynamic Model Description of the Liquid Phase in the Al2O3 -CaO-SiO2, Al2O3-FeO-SiO2 and Al2-MnO-SiO2 Systems

Thermodynamic Model Description of the Liquid Phase in the Al2O3 -CaO-SiO2, Al2O3-FeO-SiO2 and Al2-MnO-SiO2 Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description


Coupled Experimental and Thermodynamic Modeling of A12O3-CaO-FeO-Fe2O3-MgO-MnO-Mn2O3-SiO2- TiO3-TiO2 System

Coupled Experimental and Thermodynamic Modeling of A12O3-CaO-FeO-Fe2O3-MgO-MnO-Mn2O3-SiO2- TiO3-TiO2 System PDF Author: Sourav Panda
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"The phase diagram and thermodynamic properties of the Al2O3-CaO-FeO-Fe2O3-MgO-MnO-Mn2O3-SiO2-Ti2O3-TiO2 system are important in various applications such as steelmaking, refractories, advanced ceramics, petrology and geochemistry. In the present work, the available thermodynamic database for the Al2O3-CaO-FeO-Fe2O3-MgO-SiO2 system was expanded toward the Mn and Ti oxide systems to develop an accurate thermodynamic database for the ten-component system. For this purpose, a complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of related systems at 1 atm was performed. As part of the thermodynamic study, key phase diagram experiments were performed in the Fe-Ti-O, Mn-Ti-O, Al-Ti-O, Fe-Mn-Ti-O, Mg-Mn-Ti-O, Mn-Si-Ti-O, and Mn-Al-Ti-O systems in air to obtain unknown phase equilibria between the liquid phase and complex solid solutions and resolve any inconsistencies among existing experimental data in the literature.Phase diagram experiments were performed using the classical equilibration and quenching technique. Phase analysis was performed using Electron Probe Microanalysis (EPMA) and X-ray Diffraction (XRD) on all the quenched samples. In the Al-Ti-O system, the solubility of Al2O3 in the rutile (TiO2) solid solution was measured at high temperature. In the Fe-Ti-O system, the liquidus, solubility of Fe2O3 in the rutile (TiO2) solution, and the homogeneity ranges of Fe2O3-FeTiO3 ilmenite and Fe2TiO5-Ti3O5 pseudobrookite solutions were determined at high temperature. In the Mn-Ti-O system, the liquidus, MnO solubility in rutile and the homogeneity range of Mn3O4-Mn2TiO4 spinel were measured. In the Mg-Mn-Ti-O, Fe-Mn-Ti-O and Mn-Si-Ti-O systems, the complex phase equilibria between liquid and solid solutions were experimentally elucidated for the first time in air atmosphere. For the thermodynamic optimization, the liquid phase was described using the Modified Quasichemical Model considering short-range ordering in the molten oxide and the Gibbs energies of the complex solid solutions pseudobrookite, ilmenite and spinel were described using the Compound Energy Formalism considering the crystal structure of each solid solution. Using the thermodynamic models with optimized model parameters in binary and ternary systems, the phase diagrams and thermodynamic properties of higher order systems in the Al2O3-CaO-FeO-Fe2O3-MgO-MnO-Mn2O3-SiO2-Ti2O3-TiO2 system were well calculated. The database containing the optimized model parameters in this study is compatible with the other FactSage thermodynamic databases and can be used to calculate any unexplored phase diagram and thermodynamic properties within the ten-component system. The database can be used for the complex thermodynamic calculations applicable to pyrometallurgy and advanced ceramics and used for the optimization of industrial processes and the development of new materials. " --

Magma Redox Geochemistry

Magma Redox Geochemistry PDF Author: Roberto Moretti
Publisher: John Wiley & Sons
ISBN: 111947325X
Category : Science
Languages : en
Pages : 436

Get Book Here

Book Description
Explores the many facets of redox exchanges that drive magma's behavior and evolution, from the origin of the Earth until today The redox state is one of the master variables behind the Earth's forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so far Redox processes from Earth’s accretion to global geodynamics Redox evolution from the magma source to volcanic emissions Redox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Thermodynamic Tabulations for Selected Phases in the System CaO-Al2O3-SiO2-H2O at 101.325 KPa (1atm) Between 273.15 and 1800K

Thermodynamic Tabulations for Selected Phases in the System CaO-Al2O3-SiO2-H2O at 101.325 KPa (1atm) Between 273.15 and 1800K PDF Author: John L. Haas (Jr.)
Publisher:
ISBN:
Category : Aluminum silicates
Languages : en
Pages : 95

Get Book Here

Book Description


Thermodynamic Tabulations for Selected Phases in the System CaO-Al2O3-SiO2-H2O

Thermodynamic Tabulations for Selected Phases in the System CaO-Al2O3-SiO2-H2O PDF Author: John L. Haas
Publisher:
ISBN:
Category : Thermodynamics
Languages : en
Pages : 270

Get Book Here

Book Description


Comprehensive Nuclear Materials

Comprehensive Nuclear Materials PDF Author:
Publisher: Elsevier
ISBN: 0081028660
Category : Science
Languages : en
Pages : 4871

Get Book Here

Book Description
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Coupled Thermodynamic Modeling and Experimental Study of Na2O-FeO-Fe2O3-CaO-MgO-A12O3-SiO2 System

Coupled Thermodynamic Modeling and Experimental Study of Na2O-FeO-Fe2O3-CaO-MgO-A12O3-SiO2 System PDF Author: Elmira Moosavi Khoonsari
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"The significance of the Na2O-FeO-Fe2O3-CaO-MgO-Al2O3-SiO2 system stems from its applications in industrial processes and natural phenomena. This system in whole or in part was studied for the cooling system of fast breeder reactors, the desulfurization of hot metal and liquid steel, the production of bioactive glasses, coal-combustion slags, the reduction process of bauxite with soda for the production of Al2O3, and the production of solid-state electrodes for electrochemical cells. It also possesses many well-known minerals such as wüstite, spinel, corundum, aegirine, etc. which are of importance in geology. However, phase equilibria in this system are indeed very complex due to the change of Fe oxidation state with oxygen partial pressure and the substitution of Fe3+ by Al3+ in solid solutions. Moreover, the high vapor pressure of sodium, hygroscopicity, high viscosity of SiO2-rich melts, and high fluidity of Na2O- and FeO-rich melts make the experimental study of this system quite challenging. As a result, experimental results in this system were often inconsistent and limited in terms of composition and temperature. Therefore, the construction of a coherent thermodynamic database for the Na2O-FeO-Fe2O3-CaO-MgO-Al2O3-SiO2 system is essential to optimize existing material processes and to develop new processes and advanced materials.All solid and liquid phases of two binaries, six ternaries and two multicomponent sub-systems in the Na2O-FeO-Fe2O3-CaO-MgO-Al2O3-SiO2 system were critically evaluated and optimized in the current study. Using proper thermodynamic models considering the crystal structure of each phase reduces the number of model parameters and thus, enhances the predictive ability of models especially in high order systems. The molten oxide phase was modeled using the Modified Quasichemical Model which takes into account second-nearest-neighbor cation ordering. Extensive solid solutions such as meta-oxides, [beta]"-alumina and pyroxene were treated within the frame work of Compound Energy Formalism with the consideration of their sublattice crystal structures. The wüstite solid solution was modeled using polynomial expansions of the excess Gibbs energy. The sulfide dissolution in the molten oxide phase was modeled using the Modified Quasichemical Model in quadruplet approximation taking into account both first and second-nearest-neighbor short range ordering, simultaneously. Experimental data in the Na2O-FeO-Fe2O3-Al2O3 system were very limited. Hence, key phase diagram experiments and thermodynamic optimization were conducted in this system. Phase diagram experiments were performed using the quenching method followed by Electron Probe Micro-Analysis and X-Ray Diffraction for phase identification. Two- and three-phase equilibria of this system including solid and liquid phases were determined, and the presence of [beta]"-alumina solid solution with a large miscibility gap was revealed for the first time in this work. The developed database was applied to predict the sulfide dissolution in the Na2O-FeO-Fe2O3-CaO-MgO-MnO-Al2O3-SiO2 molten oxide phase which is of high importance for the production of low sulfur steels. Based on the present thermodynamic modeling results, it was shown, for the first time, that the sulfide capacity of Na2O-containing oxide melts is not always a unique property of a given melt composition, and can vary with the gas composition in equilibrium with the oxide melt." --

ISIJ International

ISIJ International PDF Author:
Publisher:
ISBN:
Category : Iron
Languages : en
Pages : 1000

Get Book Here

Book Description


Thermodynamic and Thermophysical Properties of Selected Phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-AlO2 Chemical Systems, with Special Emphasis on the Properties of Basalts and Their Mineral Components

Thermodynamic and Thermophysical Properties of Selected Phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-AlO2 Chemical Systems, with Special Emphasis on the Properties of Basalts and Their Mineral Components PDF Author: G. R. Robinson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Thermodynamic study of the FeO-MgO-Al[sub]2O[sub]3-SiO[sub]2 system

Thermodynamic study of the FeO-MgO-Al[sub]2O[sub]3-SiO[sub]2 system PDF Author: Olga Fabrichnaya
Publisher:
ISBN: 9789155441753
Category : Earth (Planet)
Languages : en
Pages : 13

Get Book Here

Book Description