Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived Lead Zirconate Titanate Thin Layers

Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived Lead Zirconate Titanate Thin Layers PDF Author: Charles David Edward Lakeman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Research is reported for the relationships that exist between processing, composition and structure development, and properties, for sol-gel derived $rm Pb(Zrsb{0.53}Tisb{0.47})Osb3$ (PZT) thin layers. Emphasis was placed on the effect of thermal processing conditions on the gel-to-ceramic conversion. In addition, the effects of interfacial reactions, and residual stresses on the measured properties were also considered. The purpose of the work was to contribute to the fundamental understanding of processes which occur during the high temperature treatment of sol-gel derived thin layers. The gel-to-ceramic conversion was monitored by transmission electron microscopy, diffuse reflectance infrared spectroscopy, and X-ray diffraction. As-deposited coatings were found to be amorphous with compositional heterogeneity at the nanoscale. This is the first report which identifies the nature of the compositional heterogeneity. Structural rearrangement occurred during thermal processing and, for slow heating (50$spcirc$C/min), the coatings approached compositional uniformity on crystallization into the perovskite phase. However, for faster heating rates, the degree of structural rearrangement was limited, thereby decreasing the shrinkage normal to the coating, and crystallization was shifted to a higher temperature. Also, for very rapid thermal processing (5000$spcirc$C/min), compositional heterogeneity was retained in the coatings after crystallization. An apparent dependence on thickness for the properties for ferroelectric PZT thin layers was observed. It was confirmed that a cover coat of a PbO-precursor deposited onto the gel-derived layers prior to firing compensated for the volatilization of PbO which occurred during heating, resulting in coatings which displayed improved properties over those prepared without a cover coat. A simple series capacitor model was investigated to interpret the data. SIMS and TEM analyses indicated that diffusion of some of the species resulted in the formation of a sub-electrode nano-crystalline phase, however, no second phases were observed between the electrode and the coating. Measurements of the residual stress state in PZT coatings deposited onto platinized silicon substrates, and fired at 700$spcirc$C, indicated a tensile stress of approximately +200MPa in the plans of the coating. Thermal expansion mismatch stresses were calculated to be of the order of $-$300MPa in compression, indicating that large tensile stresses were generated during constrained shrinkage.

Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived Lead Zirconate Titanate Thin Layers

Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived Lead Zirconate Titanate Thin Layers PDF Author: Charles David Edward Lakeman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Research is reported for the relationships that exist between processing, composition and structure development, and properties, for sol-gel derived $rm Pb(Zrsb{0.53}Tisb{0.47})Osb3$ (PZT) thin layers. Emphasis was placed on the effect of thermal processing conditions on the gel-to-ceramic conversion. In addition, the effects of interfacial reactions, and residual stresses on the measured properties were also considered. The purpose of the work was to contribute to the fundamental understanding of processes which occur during the high temperature treatment of sol-gel derived thin layers. The gel-to-ceramic conversion was monitored by transmission electron microscopy, diffuse reflectance infrared spectroscopy, and X-ray diffraction. As-deposited coatings were found to be amorphous with compositional heterogeneity at the nanoscale. This is the first report which identifies the nature of the compositional heterogeneity. Structural rearrangement occurred during thermal processing and, for slow heating (50$spcirc$C/min), the coatings approached compositional uniformity on crystallization into the perovskite phase. However, for faster heating rates, the degree of structural rearrangement was limited, thereby decreasing the shrinkage normal to the coating, and crystallization was shifted to a higher temperature. Also, for very rapid thermal processing (5000$spcirc$C/min), compositional heterogeneity was retained in the coatings after crystallization. An apparent dependence on thickness for the properties for ferroelectric PZT thin layers was observed. It was confirmed that a cover coat of a PbO-precursor deposited onto the gel-derived layers prior to firing compensated for the volatilization of PbO which occurred during heating, resulting in coatings which displayed improved properties over those prepared without a cover coat. A simple series capacitor model was investigated to interpret the data. SIMS and TEM analyses indicated that diffusion of some of the species resulted in the formation of a sub-electrode nano-crystalline phase, however, no second phases were observed between the electrode and the coating. Measurements of the residual stress state in PZT coatings deposited onto platinized silicon substrates, and fired at 700$spcirc$C, indicated a tensile stress of approximately +200MPa in the plans of the coating. Thermal expansion mismatch stresses were calculated to be of the order of $-$300MPa in compression, indicating that large tensile stresses were generated during constrained shrinkage.

Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived PZT Thin Layers

Thermal Processing and the Evolution of Composition, Structure and Properties for Sol-gel Derived PZT Thin Layers PDF Author: Charles David Edward Lakeman
Publisher:
ISBN:
Category :
Languages : en
Pages : 300

Get Book Here

Book Description


Sol-gel Processing, Microstructural Development, and Electrical Properties of Ferroelectric Lead Zirconate-titanate Thin Films

Sol-gel Processing, Microstructural Development, and Electrical Properties of Ferroelectric Lead Zirconate-titanate Thin Films PDF Author: Cheng-Chen Hsueh
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Get Book Here

Book Description


Sol-Gel Technologies for Glass Producers and Users

Sol-Gel Technologies for Glass Producers and Users PDF Author: Michel Andre Aegerter
Publisher: Springer Science & Business Media
ISBN: 0387889531
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.

Chemical Solution Deposition of Functional Oxide Thin Films

Chemical Solution Deposition of Functional Oxide Thin Films PDF Author: Theodor Schneller
Publisher: Springer Science & Business Media
ISBN: 3211993118
Category : Technology & Engineering
Languages : en
Pages : 801

Get Book Here

Book Description
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Evolution of Local Structure and Stress Development During Thermal Treatment of Sol-gel Derived PZT-based Thin Layers

Evolution of Local Structure and Stress Development During Thermal Treatment of Sol-gel Derived PZT-based Thin Layers PDF Author: Samit Sushil Sengupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 360

Get Book Here

Book Description
Significant progress has been made in recent years on the deposition of ferroelectric thin layers by sol-gel processing. However, to sustain further improvements in the technique necessary for widespread applications, a systematic approach to the study of physical, chemical and structural changes that occur during transformation from the as-deposited state to the desired perovskite phase must be undertaken. In view of the need for a fundamental understanding of structure-processing relationships in these systems, this thesis investigates variations in local structure and network development for sol-gel derived precursors in the lead zirconate titanate (PZT) system as a function of heat treatment conditions. Structural studies were based on extended x-ray absorption fine structure (EXAFS) analysis of gels and thin layers. Consolidation of the thin layer network was monitored by in situ ellipsometry and thermal analysis techniques. The resulting constrained shrinkage for the deposited layers produced large stresses (up to 180 MPa), which were determined by wafer bending measurements. EXAFS measurements for partially heat-treated PZT gels are reported. After gels were dried and pyrolyzed, the amorphous structure was determined from results obtained from the titanium and zirconium K-edges and the lead L$rmsb{III}$-edge. For lead titanate (PT) and PZT53/47 gels, the results indicated the formation of separate TiO$sb6$ and ZrO$sb6$ units linked via corner-sharing oxygen atoms, with Pb in random positions. For lead zirconate (PZ) gels, both Zr-O-Pb and Zr-O-Zr linkages were possible. These findings indicate heterogeneity at the molecular level and nanoscale. Partially heat-treated thin layers of lead titanate deposited on polycrystalline alumina substrates were heat treated under various conditions to examine the evolution of the crystalline phase. Structural ordering was initiated by a progressive enhancement in the Pb-O coordination number and increased occupancy of Pb in the second shell of Ti, with a corresponding breakdown in the Ti-Ti second neighbor ordering. However, crystallization preceded complete development of the short-range order characteristic of the tetragonal perovskite unit. Densification of PZT thin layers spin-coated on silicon was monitored by shrinkage and optical measurements. With increasing Zr content, the net consolidation was greater and occurred over a wider temperature range. These differences were related to differences in the structure of the as-hydrolyzed precursors. Most of the total shrinkage (e.g., 40-45% linear shrinkage) on heating to 500$spcirc$C occurred during drying and pyrolysis, which resulted in large tensile stress ($sim$150MPa). Subsequent stress behavior was primarily governed by the thermal expansion mismatch between the substrate and the coating. Stress development for multideposited PT coatings was determined by the structure of the layer on which the coating was being deposited and heat treated. Progressive crystallization of the layer induced a change in the thermal expansion coefficient, thereby initiating a change in the stress state from tensile to compressive. The observed behavior is discussed in terms of nucleation mechanisms at the multilayer interfaces and within the coating as a whole. This study has demonstrated the importance of identifying structural pathways and developing a basic understanding of the densification behavior in sol-gel derived materials as a function of thermal processing conditions. The findings of this research work should aid in developing suitable experimental procedures for future processing of gel-derived thin layers.

Ceramic Abstracts

Ceramic Abstracts PDF Author:
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 250

Get Book Here

Book Description


Effects of Solution Precursor Nature on Sol-gel Derived PZT Thin Film Crystallization Behavior and Properties

Effects of Solution Precursor Nature on Sol-gel Derived PZT Thin Film Crystallization Behavior and Properties PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
In fabricating lead zirconate titanate (PZT) films for nonvolatile memories and decoupling capacitors, various deposition methods have been investigated. Each can produce films with acceptable dielectric and ferroelectric properties, but sol-gel methods offer excellent control of film stoichiometry and coating uniformity. The sol-gel approaches for PZT film fabrication fall into two categories: processes that use 2-methoxyethanol as a solvent, and processes that use chelating agents, such as acetic acid, for reducing the hydrolysis sensitivity of the alkoxide compounds. Due to concerns about the toxicity of 2-methoxyethanol, we have concentrated on the second category. It was found that, in addition to reducing the hydrolysis sensitivity, the chelating agents serves to define the processing behavior of the films: film consolidation after deposition and densification and crystallization during heat treatment. This paper discusses the relations between precursor structure (reactions between chelating agents and the metal alkoxide starting reagents) and film consolidation, densification, and crystallization.

Nanoliquid Processes for Electronic Devices

Nanoliquid Processes for Electronic Devices PDF Author: Tatsuya Shimoda
Publisher: Springer
ISBN: 9811329532
Category : Technology & Engineering
Languages : en
Pages : 594

Get Book Here

Book Description
This book summarizes the results of the research on how to make small electronic devices with high properties by using simple liquid processes such as coating, self-assembling and printing, especially focusing on devices composed of silicon and oxide materials. It describes syntheses and analyses of solution materials, formations of solid thin films from solutions, newly developed patterning methods to make devices, and characterization of the developed devices. In the first part of the book, the research on liquid silicon (Si) materials is described. Because the use of a liquid material is a quite new idea for Si devices, this book is the first one to describe liquid Si materials for electronic devices. Si devices as typified by MOS-FET have been produced by using solid and gas materials. This volume precisely describes a series of processes from material synthesis to device fabrication for those who are interested and are/will be engaged in liquid Si-related work. In the latter part of the book, a general method of how to make good oxide films from solutions and a new imprinting method to make nanosized patterns are introduced. For making oxide films with high quality, the designing of the solution is crucial. If a solution is designed properly, a gel material called "cluster gel" can be formed which is able to be imprinted to form nanosized patterns. The anticipated readers of this book are researchers, engineers, and students who are interested in solution and printing processes for making devices. More generally, this book will also provide guidelines for corporate managers and executives who are responsible for making strategies for future manufacturing processes.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058

Get Book Here

Book Description