Author: Bahman Zohuri
Publisher: Springer Nature
ISBN: 3030630641
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
Thermal Effects of High Power Laser Energy on Materials
Author: Bahman Zohuri
Publisher: Springer Nature
ISBN: 3030630641
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
Publisher: Springer Nature
ISBN: 3030630641
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
Packaging of High Power Semiconductor Lasers
Author: Xingsheng Liu
Publisher: Springer
ISBN: 1461492637
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.
Publisher: Springer
ISBN: 1461492637
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.
Solid-State Laser Engineering
Author: Walter Koechner
Publisher: Springer
ISBN: 3662142198
Category : Science
Languages : en
Pages : 759
Book Description
This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.
Publisher: Springer
ISBN: 3662142198
Category : Science
Languages : en
Pages : 759
Book Description
This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.
Solid State Laser
Author: Amin Al-Khursan
Publisher: BoD – Books on Demand
ISBN: 9535100866
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This book deals with theoretical and experimental aspects of solid-state lasers, including optimum waveguide design of end pumped and diode pumped lasers. Nonlinearity, including the nonlinear conversion, up frequency conversion and chirped pulse oscillators are discussed. Some new rare-earth-doped lasers, including double borate and halide crystals, and feedback in quantum dot semiconductor nanostructures are included.
Publisher: BoD – Books on Demand
ISBN: 9535100866
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This book deals with theoretical and experimental aspects of solid-state lasers, including optimum waveguide design of end pumped and diode pumped lasers. Nonlinearity, including the nonlinear conversion, up frequency conversion and chirped pulse oscillators are discussed. Some new rare-earth-doped lasers, including double borate and halide crystals, and feedback in quantum dot semiconductor nanostructures are included.
The Physics and Engineering of Solid State Lasers
Author: Yehoshua Y. Kalisky
Publisher: SPIE Press
ISBN: 9780819460943
Category : Science
Languages : en
Pages : 226
Book Description
Explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. This book provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids.
Publisher: SPIE Press
ISBN: 9780819460943
Category : Science
Languages : en
Pages : 226
Book Description
Explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. This book provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids.
Solid-state Lasers
Author: Thomas O. Hardwell
Publisher: Nova Publishers
ISBN: 9781604561814
Category : Science
Languages : en
Pages : 246
Book Description
A solid-state laser use and gain medium that is a solid, rather than a liquid such as dye lasers or a gas such as gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered separately from solid-state lasers. Generally, the active medium of a solid-state laser consists of a glass or crystalline host material to which is added a dopant such as neodymium, chromium, erbium, or other ions. Many of the common dopants are rare earth elements, because the excited states of such ions are not strongly coupled with thermal vibrations of the crystalline lattice (phonons), and the lasing threshold can be reached at relatively low brightness of pump. There are many hundreds of solid-state media in which laser action has been achieved, but relatively few types are in widespread use. Of these, probably the most common type is neodymium doped YAG. Neodymium-doped glass (Nd:glass) and Ytterbium-doped glasses and ceramics are used in solid-state lasers at extremely high power (terawatt scale), high energy (megajoules) multiple beam systems for inertial confinement fusion. Titanium doped sapphire is also widely used for its broad tunability. This book gathers new research in the field.
Publisher: Nova Publishers
ISBN: 9781604561814
Category : Science
Languages : en
Pages : 246
Book Description
A solid-state laser use and gain medium that is a solid, rather than a liquid such as dye lasers or a gas such as gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered separately from solid-state lasers. Generally, the active medium of a solid-state laser consists of a glass or crystalline host material to which is added a dopant such as neodymium, chromium, erbium, or other ions. Many of the common dopants are rare earth elements, because the excited states of such ions are not strongly coupled with thermal vibrations of the crystalline lattice (phonons), and the lasing threshold can be reached at relatively low brightness of pump. There are many hundreds of solid-state media in which laser action has been achieved, but relatively few types are in widespread use. Of these, probably the most common type is neodymium doped YAG. Neodymium-doped glass (Nd:glass) and Ytterbium-doped glasses and ceramics are used in solid-state lasers at extremely high power (terawatt scale), high energy (megajoules) multiple beam systems for inertial confinement fusion. Titanium doped sapphire is also widely used for its broad tunability. This book gathers new research in the field.
Solid-State Lasers for Materials Processing
Author: Reinhard Iffländer
Publisher: Springer Science & Business Media
ISBN: 9783540669807
Category : Science
Languages : en
Pages : 380
Book Description
From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News
Publisher: Springer Science & Business Media
ISBN: 9783540669807
Category : Science
Languages : en
Pages : 380
Book Description
From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News
Ceramic Lasers
Author: Akio Ikesue
Publisher: Cambridge University Press
ISBN: 110724417X
Category : Science
Languages : en
Pages : 459
Book Description
Until recently, ceramic materials were considered unsuitable for optics due to the numerous scattering sources, such as grain boundaries and residual pores. However, in the 1990s the technology to generate a coherent beam from ceramic materials was developed, and a highly efficient laser oscillation was realized. In the future, the technology derived from the development of the ceramic laser could be used to develop new functional passive and active optics. Co-authored by one of the pioneers of this field, the book describes the fabrication technology and theoretical characterization of ceramic material properties. It describes novel types of solid lasers and other optics using ceramic materials to demonstrate the application of ceramic gain media in the generation of coherent beams and light amplification. This is an invaluable guide for physicists, materials scientists and engineers working on laser ceramics.
Publisher: Cambridge University Press
ISBN: 110724417X
Category : Science
Languages : en
Pages : 459
Book Description
Until recently, ceramic materials were considered unsuitable for optics due to the numerous scattering sources, such as grain boundaries and residual pores. However, in the 1990s the technology to generate a coherent beam from ceramic materials was developed, and a highly efficient laser oscillation was realized. In the future, the technology derived from the development of the ceramic laser could be used to develop new functional passive and active optics. Co-authored by one of the pioneers of this field, the book describes the fabrication technology and theoretical characterization of ceramic material properties. It describes novel types of solid lasers and other optics using ceramic materials to demonstrate the application of ceramic gain media in the generation of coherent beams and light amplification. This is an invaluable guide for physicists, materials scientists and engineers working on laser ceramics.
High Power Diode Lasers
Author: Friedrich Bachmann
Publisher: Springer
ISBN: 0387347291
Category : Science
Languages : en
Pages : 553
Book Description
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
Publisher: Springer
ISBN: 0387347291
Category : Science
Languages : en
Pages : 553
Book Description
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
Optical Refrigeration
Author: Richard I. Epstein
Publisher: John Wiley & Sons
ISBN: 3527628053
Category : Science
Languages : en
Pages : 258
Book Description
Edited by the two top experts in the field with a panel of International contributors, this is a comprehensive up-to-date review of research and applications. Starting with the basic physical principles of laser cooling of solids, the monograph goes on to discuss the current theoretical issues being resolved and the increasing demands of growth and evaluation of high purity materials suitable for optical refrigeration, while also examining the design and applications of practical cryocoolers. An advanced text for scientists, researchers, engineers, and students (masters, PHDs and Postdoc) in laser and optical material science, and cryogenics.
Publisher: John Wiley & Sons
ISBN: 3527628053
Category : Science
Languages : en
Pages : 258
Book Description
Edited by the two top experts in the field with a panel of International contributors, this is a comprehensive up-to-date review of research and applications. Starting with the basic physical principles of laser cooling of solids, the monograph goes on to discuss the current theoretical issues being resolved and the increasing demands of growth and evaluation of high purity materials suitable for optical refrigeration, while also examining the design and applications of practical cryocoolers. An advanced text for scientists, researchers, engineers, and students (masters, PHDs and Postdoc) in laser and optical material science, and cryogenics.