Author: Harvey Gould
Publisher: Princeton University Press
ISBN: 0691230846
Category : Science
Languages : en
Pages : 528
Book Description
A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)
Statistical and Thermal Physics
Author: Harvey Gould
Publisher: Princeton University Press
ISBN: 0691230846
Category : Science
Languages : en
Pages : 528
Book Description
A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)
Publisher: Princeton University Press
ISBN: 0691230846
Category : Science
Languages : en
Pages : 528
Book Description
A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)
Thermal Physics
Author: Robert Floyd Sekerka
Publisher: Elsevier
ISBN: 0128033371
Category : Science
Languages : en
Pages : 610
Book Description
In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. - Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers - Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers - Develops content systematically with increasing order of complexity - Self-contained, including nine appendices to handle necessary background and technical details
Publisher: Elsevier
ISBN: 0128033371
Category : Science
Languages : en
Pages : 610
Book Description
In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. - Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers - Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers - Develops content systematically with increasing order of complexity - Self-contained, including nine appendices to handle necessary background and technical details
Thermal and Statistical Physics Simulations
Author: Harvey Gould
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.
Thermal Physics and Statistical Mechanics
Author: S. K. Roy
Publisher: New Age International
ISBN: 9788122413021
Category : Entropy
Languages : en
Pages : 436
Book Description
This Book Emphasises The Development Of Problem Solving Skills In Undergraduate Science And Engineering Students.The Book Provides More Than 350 Solved Examples With Complete Step-By-Step Solutions As Well As Around 100 Practice Problems With Answers.Also Explains The Basic Theory, Principles, Equations And Formulae For A Quick Understanding And Review. Can Serve Both As A Useful Text And Companion Book To Those Pre-Paring For Various Examinations In Physics.
Publisher: New Age International
ISBN: 9788122413021
Category : Entropy
Languages : en
Pages : 436
Book Description
This Book Emphasises The Development Of Problem Solving Skills In Undergraduate Science And Engineering Students.The Book Provides More Than 350 Solved Examples With Complete Step-By-Step Solutions As Well As Around 100 Practice Problems With Answers.Also Explains The Basic Theory, Principles, Equations And Formulae For A Quick Understanding And Review. Can Serve Both As A Useful Text And Companion Book To Those Pre-Paring For Various Examinations In Physics.
Statistical and Thermal Physics
Author: M.D. Sturge
Publisher: CRC Press
ISBN: 143986442X
Category : Mathematics
Languages : en
Pages : 481
Book Description
This book is based on many years of teaching statistical and thermal physics. It assumes no previous knowledge of thermodynamics, kinetic theory, or probability---the only prerequisites are an elementary knowledge of classical and modern physics, and of multivariable calculus. The first half of the book introduces the subject inductively but rigorously, proceeding from the concrete and specific to the abstract and general. In clear physical language the book explains the key concepts, such as temperature, heat, entropy, free energy, chemical potential, and distributions, both classical and quantum. The second half of the book applies these concepts to a wide variety of phenomena, including perfect gases, heat engines, and transport processes. Each chapter contains fully worked examples and real-world problems drawn from physics, astronomy, biology, chemistry, electronics, and mechanical engineering.
Publisher: CRC Press
ISBN: 143986442X
Category : Mathematics
Languages : en
Pages : 481
Book Description
This book is based on many years of teaching statistical and thermal physics. It assumes no previous knowledge of thermodynamics, kinetic theory, or probability---the only prerequisites are an elementary knowledge of classical and modern physics, and of multivariable calculus. The first half of the book introduces the subject inductively but rigorously, proceeding from the concrete and specific to the abstract and general. In clear physical language the book explains the key concepts, such as temperature, heat, entropy, free energy, chemical potential, and distributions, both classical and quantum. The second half of the book applies these concepts to a wide variety of phenomena, including perfect gases, heat engines, and transport processes. Each chapter contains fully worked examples and real-world problems drawn from physics, astronomy, biology, chemistry, electronics, and mechanical engineering.
An Introduction to Thermal Physics
Author: Daniel V. Schroeder
Publisher:
ISBN: 0192895540
Category : Science
Languages : en
Pages : 435
Book Description
This is a textbook for the standard undergraduate-level course in thermal physics (sometimes called thermodynamics or statistical mechanics). Originally published in 1999, it quickly gained market share and has now been the most widely used English-language text for such courses, as taught in physics departments, for more than a decade. Its clear and accessible writing style has also made it popular among graduate students and professionals who want to gain abetter understanding of thermal physics. The book explores applications to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life. It includes twoappendices, reference data, an annotated bibliography, a complete index, and 486 homework problems.
Publisher:
ISBN: 0192895540
Category : Science
Languages : en
Pages : 435
Book Description
This is a textbook for the standard undergraduate-level course in thermal physics (sometimes called thermodynamics or statistical mechanics). Originally published in 1999, it quickly gained market share and has now been the most widely used English-language text for such courses, as taught in physics departments, for more than a decade. Its clear and accessible writing style has also made it popular among graduate students and professionals who want to gain abetter understanding of thermal physics. The book explores applications to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life. It includes twoappendices, reference data, an annotated bibliography, a complete index, and 486 homework problems.
Thermal and Statistical Physics
Author: R. B. Singh
Publisher: New Academic Science Limited
ISBN: 9781906574758
Category : Statistical physics
Languages : en
Pages : 0
Book Description
Basic concepts and notions explained in a simple way A large number of solved examples provided Self-contained mathematical tools provided to understand concepts of statistical physics
Publisher: New Academic Science Limited
ISBN: 9781906574758
Category : Statistical physics
Languages : en
Pages : 0
Book Description
Basic concepts and notions explained in a simple way A large number of solved examples provided Self-contained mathematical tools provided to understand concepts of statistical physics
Statistical and Thermal Physics
Author: R. S. GAMBHIR
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812030585X
Category : Science
Languages : en
Pages : 282
Book Description
A standard text combining statistical physics with thermal phenomena, this book presents a unified approach to provide a deeper insight into the subject and to bring out the subtle unity of statistical mechanics and thermodynamics. Suitable as a text for undergraduate courses in physics. KEY FEATURES • Presents a new pedagogical approach introducing macroscopic (classical) thermodynamics through the statistical mechanics. This new approach is increasingly sought to be introduced worldwide. • Magnitudes of physical quantities under discussion are emphasized through worked-out examples. • Questions and exercises are interspersed with the text to help students consolidate the learning. • Techniques developed in this course are applied to actual modern situations. • Many topics are introduced through the problems to help inculcate self-study.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812030585X
Category : Science
Languages : en
Pages : 282
Book Description
A standard text combining statistical physics with thermal phenomena, this book presents a unified approach to provide a deeper insight into the subject and to bring out the subtle unity of statistical mechanics and thermodynamics. Suitable as a text for undergraduate courses in physics. KEY FEATURES • Presents a new pedagogical approach introducing macroscopic (classical) thermodynamics through the statistical mechanics. This new approach is increasingly sought to be introduced worldwide. • Magnitudes of physical quantities under discussion are emphasized through worked-out examples. • Questions and exercises are interspersed with the text to help students consolidate the learning. • Techniques developed in this course are applied to actual modern situations. • Many topics are introduced through the problems to help inculcate self-study.
Statistical Physics of Particles
Author: Mehran Kardar
Publisher: Cambridge University Press
ISBN: 1139464876
Category : Science
Languages : en
Pages : 211
Book Description
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures taught by Professor Kardar at MIT, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. A companion volume, Statistical Physics of Fields, discusses non-mean field aspects of scaling and critical phenomena, through the perspective of renormalization group.
Publisher: Cambridge University Press
ISBN: 1139464876
Category : Science
Languages : en
Pages : 211
Book Description
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures taught by Professor Kardar at MIT, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. A companion volume, Statistical Physics of Fields, discusses non-mean field aspects of scaling and critical phenomena, through the perspective of renormalization group.
Thermal Transport in Low Dimensions
Author: Stefano Lepri
Publisher: Springer
ISBN: 3319292617
Category : Science
Languages : en
Pages : 418
Book Description
Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.
Publisher: Springer
ISBN: 3319292617
Category : Science
Languages : en
Pages : 418
Book Description
Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.