Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems

Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems PDF Author: Alhussein Albarbar
Publisher: Springer
ISBN: 3319598287
Category : Technology & Engineering
Languages : en
Pages : 224

Get Book Here

Book Description
This book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs’ lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices.

Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems

Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems PDF Author: Alhussein Albarbar
Publisher: Springer
ISBN: 3319598287
Category : Technology & Engineering
Languages : en
Pages : 224

Get Book Here

Book Description
This book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs’ lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices.

Electric Renewable Energy Systems

Electric Renewable Energy Systems PDF Author: Muhammad H. Rashid
Publisher: Academic Press
ISBN: 0128006366
Category : Technology & Engineering
Languages : en
Pages : 604

Get Book Here

Book Description
This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Thermal Reliability of Power Semiconductor Device in the Renewable Energy System

Thermal Reliability of Power Semiconductor Device in the Renewable Energy System PDF Author: Xiong Du
Publisher: Springer Nature
ISBN: 9811931321
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
This book focuses on the thermal reliability of power semiconductor device by looking at the failure mechanism, thermal parameters monitoring, junction temperature estimation, lifetime evaluation, and thermal management. Theoretical analysis and experimental tests are presented to explain existing reliability improvement techniques. This book is a valuable reference for the students and researchers who pay attention to the thermal reliability design of power semiconductor device.

Integration of Renewable Sources of Energy

Integration of Renewable Sources of Energy PDF Author: Felix A. Farret
Publisher: John Wiley & Sons
ISBN: 1119137373
Category : Technology & Engineering
Languages : en
Pages : 684

Get Book Here

Book Description
The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources and distribution systems Renewable energy technologies and systems are advancing by leaps and bounds, and it’s only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems are described in detail. Chapters follow a consistent format, featuring a brief introduction to the theoretical background, a description of problems to be solved, as well as objectives to be achieved. Multiple block diagrams, electrical circuits, and mathematical analysis and/or computer code are provided throughout. And each chapter concludes with discussions of lessons learned, recommendations for further studies, and suggestions for experimental work. Key topics covered in detail include: Integration of the most usual sources of electrical power and related thermal systems Equations for energy systems and power electronics focusing on state-space and power circuit oriented simulations MATLAB® and Simulink® models and functions and their interactions with real-world implementations using microprocessors and microcontrollers Numerical integration techniques, transfer-function modeling, harmonic analysis, and power quality performance assessment MATLAB®/Simulink®, Power Systems Toolbox, and PSIM for the simulation of power electronic circuits, including for renewable energy sources such as wind and solar sources Written by distinguished experts in the field, Integration of Renewable Sources of Energy, 2nd Edition is a valuable working resource for practicing engineers interested in power electronics, power systems, power quality, and alternative or renewable energy. It is also a valuable text/reference for undergraduate and graduate electrical engineering students.

Thermal Characterisation and Reliability Analysis of Power Electronic Devices in Wind and Solar Energy Systems

Thermal Characterisation and Reliability Analysis of Power Electronic Devices in Wind and Solar Energy Systems PDF Author: Canras Batunlu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Electrical Power System Essentials

Electrical Power System Essentials PDF Author: Pieter Schavemaker
Publisher: John Wiley & Sons
ISBN: 1118803469
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
The electrical power supply is about to change; future generation will increasingly take place in and near local neighborhoods with diminishing reliance on distant power plants. The existing grid is not adapted for this purpose as it is largely a remnant from the 20th century. Can the grid be transformed into an intelligent and flexible grid that is future proof? This revised edition of Electrical Power System Essentials contains not only an accessible, broad and up-to-date overview of alternating current (AC) power systems, but also end-of-chapter exercises in every chapter, aiding readers in their understanding of the material introduced. With an original approach the book covers the generation of electric energy from thermal power plants as from renewable energy sources and treats the incorporation of power electronic devices and FACTS. Throughout there are examples and case studies that back up the theory or techniques presented. The authors set out information on mathematical modelling and equations in appendices rather than integrated in the main text. This unique approach distinguishes it from other text books on Electrical Power Systems and makes the resource highly accessible for undergraduate students and readers without a technical background directly related to power engineering. After laying out the basics for a steady-state analysis of the three-phase power system, the book examines: generation, transmission, distribution, and utilization of electric energy wind energy, solar energy and hydro power power system protection and circuit breakers power system control and operation the organization of electricity markets and the changes currently taking place system blackouts future developments in power systems, HVDC connections and smart grids The book is supplemented by a companion website from which teaching materials can be downloaded. https://www.wiley.com//legacy/wileychi/powersystem/material.html

Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells PDF Author: Alhussein Albarbar
Publisher: Springer
ISBN: 3319707272
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.

Solar Electric Power Generation - Photovoltaic Energy Systems

Solar Electric Power Generation - Photovoltaic Energy Systems PDF Author: Stefan C. W. Krauter
Publisher: Springer Science & Business Media
ISBN: 354031346X
Category : Technology & Engineering
Languages : en
Pages : 289

Get Book Here

Book Description
This book thoroughly examines the technical parameters of photovoltaic systems, and appraises their net energy balance from production, operation and maintenance, to recycling. Similar performance and yield analysis is applied to optical, thermal, and electrical parameters and interfaces. Professor Krauter demonstrates how accurate yield calculations, optimal system performance, and new prototypes aid in cost reduction. Examples, tables and figures are included.

Power Electronics in Renewable Energy Systems and Smart Grid

Power Electronics in Renewable Energy Systems and Smart Grid PDF Author: Bimal K. Bose
Publisher: John Wiley & Sons
ISBN: 1119515629
Category : Technology & Engineering
Languages : en
Pages : 756

Get Book Here

Book Description
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.

Applications of Power Electronics

Applications of Power Electronics PDF Author: Frede Blaabjerg
Publisher: MDPI
ISBN: 3039210203
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ‎robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ‎smart control of power electronics in devices, microgrids, and at system levels.