Author: Herbert Kolsky
Publisher: Courier Corporation
ISBN: 0486610985
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.
Stress Waves in Solids
Author: Herbert Kolsky
Publisher: Courier Corporation
ISBN: 0486610985
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.
Publisher: Courier Corporation
ISBN: 0486610985
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.
Theory of waves in materials
Author:
Publisher: Bookboon
ISBN: 8776818179
Category :
Languages : en
Pages : 270
Book Description
Publisher: Bookboon
ISBN: 8776818179
Category :
Languages : en
Pages : 270
Book Description
Wave Propagation in Elastic Solids
Author: J. D. Achenbach
Publisher: Elsevier
ISBN: 1483163733
Category : Science
Languages : en
Pages : 440
Book Description
Wave Propagation in Elastic Solids focuses on linearized theory and perfectly elastic media. This book discusses the one-dimensional motion of an elastic continuum; linearized theory of elasticity; elastodynamic theory; and elastic waves in an unbounded medium. The plane harmonic waves in elastic half-spaces; harmonic waves in waveguides; and forced motions of a half-space are also elaborated. This text likewise covers the transient waves in layers and rods; diffraction of waves by a slit; and thermal and viscoelastic effects, and effects of anisotropy and nonlinearity. Other topics include the summary of equations in rectangular coordinates, time-harmonic plane waves, approximate theories for rods, and transient in-plane motion of a layer. This publication is a good source for students and researchers conducting work on the wave propagation in elastic solids.
Publisher: Elsevier
ISBN: 1483163733
Category : Science
Languages : en
Pages : 440
Book Description
Wave Propagation in Elastic Solids focuses on linearized theory and perfectly elastic media. This book discusses the one-dimensional motion of an elastic continuum; linearized theory of elasticity; elastodynamic theory; and elastic waves in an unbounded medium. The plane harmonic waves in elastic half-spaces; harmonic waves in waveguides; and forced motions of a half-space are also elaborated. This text likewise covers the transient waves in layers and rods; diffraction of waves by a slit; and thermal and viscoelastic effects, and effects of anisotropy and nonlinearity. Other topics include the summary of equations in rectangular coordinates, time-harmonic plane waves, approximate theories for rods, and transient in-plane motion of a layer. This publication is a good source for students and researchers conducting work on the wave propagation in elastic solids.
An Introduction to the Mathematical Theory of Waves
Author: Roger Knobel
Publisher: American Mathematical Soc.
ISBN: 0821820397
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.
Publisher: American Mathematical Soc.
ISBN: 0821820397
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.
Theory of Electromagnetic Wave Propagation
Author: Charles Herach Papas
Publisher: Courier Corporation
ISBN: 048614514X
Category : Science
Languages : en
Pages : 274
Book Description
Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.
Publisher: Courier Corporation
ISBN: 048614514X
Category : Science
Languages : en
Pages : 274
Book Description
Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.
Theory of Magnetostatic Waves
Author: Daniel D Stancil
Publisher: Springer Science & Business Media
ISBN: 1461393388
Category : Science
Languages : en
Pages : 224
Book Description
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.
Publisher: Springer Science & Business Media
ISBN: 1461393388
Category : Science
Languages : en
Pages : 224
Book Description
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.
Elastic Waves
Author: Vassily Babich
Publisher: CRC Press
ISBN: 1315314754
Category : Mathematics
Languages : en
Pages : 306
Book Description
Elastic Waves: High Frequency Theory is concerned with mathematical aspects of the theory of high-frequency elastic waves, which is based on the ray method. The foundations of elastodynamics are presented along with the basic theory of plane and spherical waves. The ray method is then described in considerable detail for bulk waves in isotropic and anisotropic media, and also for the Rayleigh waves on the surface of inhomogeneous anisotropic elastic solids. Much attention is paid to analysis of higher-order terms and to generation of waves in inhomogeneous media. The aim of the book is to present a clear, systematic description of the ray method, and at the same time to emphasize its mathematical beauty. Luckily, this beauty is usually not accompanied by complexity and mathematical ornateness.
Publisher: CRC Press
ISBN: 1315314754
Category : Mathematics
Languages : en
Pages : 306
Book Description
Elastic Waves: High Frequency Theory is concerned with mathematical aspects of the theory of high-frequency elastic waves, which is based on the ray method. The foundations of elastodynamics are presented along with the basic theory of plane and spherical waves. The ray method is then described in considerable detail for bulk waves in isotropic and anisotropic media, and also for the Rayleigh waves on the surface of inhomogeneous anisotropic elastic solids. Much attention is paid to analysis of higher-order terms and to generation of waves in inhomogeneous media. The aim of the book is to present a clear, systematic description of the ray method, and at the same time to emphasize its mathematical beauty. Luckily, this beauty is usually not accompanied by complexity and mathematical ornateness.
Wave Theory of Information
Author: Massimo Franceschetti
Publisher: Cambridge University Press
ISBN: 1107022312
Category : Computers
Languages : en
Pages : 477
Book Description
An expert guide to the relationship between information theory and the physics of wave propagation, covering stochastic and deterministic approaches, engineering applications, and the universal physical limits of radiation. It is an ideal reference for researchers and graduate students in electrical engineering, physics, and applied mathematics.
Publisher: Cambridge University Press
ISBN: 1107022312
Category : Computers
Languages : en
Pages : 477
Book Description
An expert guide to the relationship between information theory and the physics of wave propagation, covering stochastic and deterministic approaches, engineering applications, and the universal physical limits of radiation. It is an ideal reference for researchers and graduate students in electrical engineering, physics, and applied mathematics.
Spin Waves
Author: Daniel D. Stancil
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Fundamentals of Shock Wave Propagation in Solids
Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745696
Category : Science
Languages : en
Pages : 439
Book Description
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.
Publisher: Springer Science & Business Media
ISBN: 3540745696
Category : Science
Languages : en
Pages : 439
Book Description
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.