Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
ISBN: 1461261880
Category : Mathematics
Languages : en
Pages : 424
Book Description
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Theory of Operator Algebras I
Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
ISBN: 1461261880
Category : Mathematics
Languages : en
Pages : 424
Book Description
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1461261880
Category : Mathematics
Languages : en
Pages : 424
Book Description
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Fundamentals of the Theory of Operator Algebras. Volume III
Author: Richard V. Kadison
Publisher: American Mathematical Soc.
ISBN: 0821894692
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Publisher: American Mathematical Soc.
ISBN: 0821894692
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Operator Algebras
Author: Bruce Blackadar
Publisher: Springer Science & Business Media
ISBN: 3540285172
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Publisher: Springer Science & Business Media
ISBN: 3540285172
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Theory of Operator Algebras II
Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
ISBN: 9783540429142
Category : Mathematics
Languages : en
Pages : 552
Book Description
Together with Theory of Operator Algebras I and III, this book presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. From the reviews: "These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of mathematics. Furthermore, they should be on the bookshelf of every researcher of the area." --ACTA SCIENTIARUM MATHEMATICARUM
Publisher: Springer Science & Business Media
ISBN: 9783540429142
Category : Mathematics
Languages : en
Pages : 552
Book Description
Together with Theory of Operator Algebras I and III, this book presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. From the reviews: "These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of mathematics. Furthermore, they should be on the bookshelf of every researcher of the area." --ACTA SCIENTIARUM MATHEMATICARUM
C*-Algebras and Operator Theory
Author: Gerald J. Murphy
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
State Spaces of Operator Algebras
Author: Erik M. Alfsen
Publisher: Springer Science & Business Media
ISBN: 9780817638900
Category : Mathematics
Languages : en
Pages : 372
Book Description
The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
Publisher: Springer Science & Business Media
ISBN: 9780817638900
Category : Mathematics
Languages : en
Pages : 372
Book Description
The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
Modular Theory in Operator Algebras
Author: Şerban Strǎtilǎ
Publisher: Cambridge University Press
ISBN: 1108489605
Category : Mathematics
Languages : en
Pages : 461
Book Description
Discusses the fundamentals and latest developments in operator algebras, focusing on continuous and discrete decomposition of factors of type III.
Publisher: Cambridge University Press
ISBN: 1108489605
Category : Mathematics
Languages : en
Pages : 461
Book Description
Discusses the fundamentals and latest developments in operator algebras, focusing on continuous and discrete decomposition of factors of type III.
Completely Bounded Maps and Operator Algebras
Author: Vern Paulsen
Publisher: Cambridge University Press
ISBN: 9780521816694
Category : Mathematics
Languages : en
Pages : 316
Book Description
In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
Publisher: Cambridge University Press
ISBN: 9780521816694
Category : Mathematics
Languages : en
Pages : 316
Book Description
In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
Vertex Operator Algebras and the Monster
Author: Igor Frenkel
Publisher: Academic Press
ISBN: 0080874541
Category : Mathematics
Languages : en
Pages : 563
Book Description
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Publisher: Academic Press
ISBN: 0080874541
Category : Mathematics
Languages : en
Pages : 563
Book Description
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
On Axiomatic Approaches to Vertex Operator Algebras and Modules
Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79
Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79
Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.