Author: V.V. Dodonov
Publisher: CRC Press
ISBN: 9780415284134
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
The term 'nonclassical states' refers to the quantum states that cannot be produced in the usual sources of light, such as lasers or lamps, rather than those requiring more sophisticated apparatus for their production. Theory of Non-classical States of Light describes the current status of the theory of nonclassical states of light including many new and important results as well as introductory material and the history of the subject. The authors concentrate on the most important types of nonclassical states, namely squeezed, even/odd ('Schrodinger cat') and binomial states, including their generalizations. However, a review of other types of nonclassical is also given in the introduction, and methods for generating nonclassical states on various processes of light-matter interaction, their phase-space description, and the time evolution of nonclassical states in these processes is presented in separate chapters. This contributed volume contains all of the necessary formulae and references required to gain a good understanding of the principles and current status of the field. It will provide a valuable information resource for advanced students and researchers in quantum physics.
Theory of Nonclassical States of Light
The Quantum Theory of Light
Author: R. Loudon
Publisher:
ISBN:
Category :
Languages : en
Pages : 438
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 438
Book Description
Quantum Optics
Author: Marlan O. Scully
Publisher: Cambridge University Press
ISBN: 9780521435956
Category : Science
Languages : en
Pages : 664
Book Description
An in-depth and wide-ranging introduction to the field of quantum optics.
Publisher: Cambridge University Press
ISBN: 9780521435956
Category : Science
Languages : en
Pages : 664
Book Description
An in-depth and wide-ranging introduction to the field of quantum optics.
Introductory Quantum Optics
Author: Christopher Gerry
Publisher: Cambridge University Press
ISBN: 9780521527354
Category : Science
Languages : en
Pages : 338
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521527354
Category : Science
Languages : en
Pages : 338
Book Description
Publisher Description
Introductory Quantum Optics
Author: Christopher C. Gerry
Publisher: Cambridge University Press
ISBN: 1009463616
Category : Science
Languages : en
Pages : 432
Book Description
This established textbook provides an accessible but comprehensive introduction to the quantum nature of light and its interaction with matter. The field of quantum optics is covered with clarity and depth, from the underlying theoretical framework of field quantization, atom–field interactions, and quantum coherence theory, to important and modern applications at the forefront of current research such as quantum interferometry, squeezed light, quantum entanglement, cavity quantum electrodynamics, laser-cooled trapped ions, and quantum information processing. The text is suitable for advanced undergraduate and graduate students and would be an ideal main text for a course on quantum optics. This long-awaited second edition builds upon the success of the first edition, including many new developments in the field, particularly in the area of quantum state engineering. Additional homework problems have been added, and content from the first edition has been updated and clarified throughout.
Publisher: Cambridge University Press
ISBN: 1009463616
Category : Science
Languages : en
Pages : 432
Book Description
This established textbook provides an accessible but comprehensive introduction to the quantum nature of light and its interaction with matter. The field of quantum optics is covered with clarity and depth, from the underlying theoretical framework of field quantization, atom–field interactions, and quantum coherence theory, to important and modern applications at the forefront of current research such as quantum interferometry, squeezed light, quantum entanglement, cavity quantum electrodynamics, laser-cooled trapped ions, and quantum information processing. The text is suitable for advanced undergraduate and graduate students and would be an ideal main text for a course on quantum optics. This long-awaited second edition builds upon the success of the first edition, including many new developments in the field, particularly in the area of quantum state engineering. Additional homework problems have been added, and content from the first edition has been updated and clarified throughout.
The Quantum Theory of Light
Author: Rodney Loudon
Publisher: OUP Oxford
ISBN: 0191589780
Category :
Languages : en
Pages : 454
Book Description
This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.
Publisher: OUP Oxford
ISBN: 0191589780
Category :
Languages : en
Pages : 454
Book Description
This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.
The Present Status of the Quantum Theory of Light
Author: Stanley Jeffers
Publisher: Springer Science & Business Media
ISBN: 9401156824
Category : Science
Languages : en
Pages : 550
Book Description
THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.
Publisher: Springer Science & Business Media
ISBN: 9401156824
Category : Science
Languages : en
Pages : 550
Book Description
THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.
Introduction to Modern Quantum Optics
Author: Jin-Sheng Peng
Publisher: World Scientific
ISBN: 9789810234485
Category : Science
Languages : en
Pages : 584
Book Description
This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.
Publisher: World Scientific
ISBN: 9789810234485
Category : Science
Languages : en
Pages : 584
Book Description
This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.
Methods in Theoretical Quantum Optics
Author: Stephen Barnett
Publisher: Oxford University Press
ISBN: 9780198563617
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work presents the mathematical methods widely used by workers in the field of quantum optics. It deals with the physical assumptions which lead to the models and approximations employed, but the main purpose of the text is to give a firm grounding in those techniques needed to derive analytical solutions to problems.
Publisher: Oxford University Press
ISBN: 9780198563617
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work presents the mathematical methods widely used by workers in the field of quantum optics. It deals with the physical assumptions which lead to the models and approximations employed, but the main purpose of the text is to give a firm grounding in those techniques needed to derive analytical solutions to problems.
Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019)
Author: Margarita A. Man’ko
Publisher: MDPI
ISBN: 3039434241
Category : Mathematics
Languages : en
Pages : 200
Book Description
The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.
Publisher: MDPI
ISBN: 3039434241
Category : Mathematics
Languages : en
Pages : 200
Book Description
The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.