Author: Daniel D Stancil
Publisher: Springer Science & Business Media
ISBN: 1461393388
Category : Science
Languages : en
Pages : 224
Book Description
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.
Theory of Magnetostatic Waves
Author: Daniel D Stancil
Publisher: Springer Science & Business Media
ISBN: 1461393388
Category : Science
Languages : en
Pages : 224
Book Description
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.
Publisher: Springer Science & Business Media
ISBN: 1461393388
Category : Science
Languages : en
Pages : 224
Book Description
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.
Spin Waves
Author: Daniel D. Stancil
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Magnetization Oscillations and Waves
Author: A.G. Gurevich
Publisher: CRC Press
ISBN: 0429605757
Category : Science
Languages : en
Pages : 460
Book Description
Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.
Publisher: CRC Press
ISBN: 0429605757
Category : Science
Languages : en
Pages : 460
Book Description
Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.
Electromagnetic Field Theory
Author: Gerd Mrozynski
Publisher: Springer Science & Business Media
ISBN: 3834821780
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems.
Publisher: Springer Science & Business Media
ISBN: 3834821780
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems.
Spin Waves
Author: Daniel D. Stancil
Publisher: Springer Nature
ISBN: 3030685829
Category : Science
Languages : en
Pages : 252
Book Description
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
Publisher: Springer Nature
ISBN: 3030685829
Category : Science
Languages : en
Pages : 252
Book Description
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
Theory and Phenomena of Metamaterials
Author: Filippo Capolino
Publisher: CRC Press
ISBN: 1351835262
Category : Technology & Engineering
Languages : en
Pages : 1304
Book Description
Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.
Publisher: CRC Press
ISBN: 1351835262
Category : Technology & Engineering
Languages : en
Pages : 1304
Book Description
Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.
Modern Ferrites, Volume 1
Author: Vincent G. Harris
Publisher: John Wiley & Sons
ISBN: 1118971485
Category : Science
Languages : en
Pages : 501
Book Description
MODERN FERRITES, Volume 1 A robust exploration of the basic principles of ferrimagnetics and their applications In Modern Ferrites Volume 1: Basic Principles, Processing and Properties, renowned researcher and educator Vincent G. Harris delivers a comprehensive overview of the basic principles and ferrimagnetic phenomena of modern ferrite materials. Volume 1 explores the fundamental properties of ferrite systems, including their structure, chemistry, and magnetism; the latest in processing methodologies; and the unique properties that result. The authors explore the processing, structure, and property relationships in ferrites as nanoparticles, thin and thick films, compacts, and crystals and how these relationships are key to realizing practical device applications laying the foundation for next generation technologies. This volume also includes: Comprehensive investigation of the historical and scientific significance of ferrites upon ancient and modern societies; Neel’s expanded theory of molecular field magnetism applied to ferrimagnetic oxides together with theoretic advances in density functional theory; Nonlinear excitations in ferrite systems and their potential for device technologies; Practical discussions of nanoparticle, thin, and thick film growth techniques; Ferrite-based electronic band-gap heterostructures and metamaterials. Perfect for RF engineers and magnetitians working in the field of RF electronics, radar, communications, and spintronics as well as other emerging technologies. Modern Ferrites will earn a place on the bookshelves of engineers and scientists interested in the ever-expanding technologies reliant upon ferrite materials and new processing methodologies. Modern Ferrites Volume 2: Emerging Technologies and Applications is also available (ISBN: 9781394156139).
Publisher: John Wiley & Sons
ISBN: 1118971485
Category : Science
Languages : en
Pages : 501
Book Description
MODERN FERRITES, Volume 1 A robust exploration of the basic principles of ferrimagnetics and their applications In Modern Ferrites Volume 1: Basic Principles, Processing and Properties, renowned researcher and educator Vincent G. Harris delivers a comprehensive overview of the basic principles and ferrimagnetic phenomena of modern ferrite materials. Volume 1 explores the fundamental properties of ferrite systems, including their structure, chemistry, and magnetism; the latest in processing methodologies; and the unique properties that result. The authors explore the processing, structure, and property relationships in ferrites as nanoparticles, thin and thick films, compacts, and crystals and how these relationships are key to realizing practical device applications laying the foundation for next generation technologies. This volume also includes: Comprehensive investigation of the historical and scientific significance of ferrites upon ancient and modern societies; Neel’s expanded theory of molecular field magnetism applied to ferrimagnetic oxides together with theoretic advances in density functional theory; Nonlinear excitations in ferrite systems and their potential for device technologies; Practical discussions of nanoparticle, thin, and thick film growth techniques; Ferrite-based electronic band-gap heterostructures and metamaterials. Perfect for RF engineers and magnetitians working in the field of RF electronics, radar, communications, and spintronics as well as other emerging technologies. Modern Ferrites will earn a place on the bookshelves of engineers and scientists interested in the ever-expanding technologies reliant upon ferrite materials and new processing methodologies. Modern Ferrites Volume 2: Emerging Technologies and Applications is also available (ISBN: 9781394156139).
Electromagnetic Theory for Microwaves and Optoelectronics
Author: Kequian Zhang
Publisher: Springer Science & Business Media
ISBN: 3662035537
Category : Science
Languages : en
Pages : 683
Book Description
This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields.
Publisher: Springer Science & Business Media
ISBN: 3662035537
Category : Science
Languages : en
Pages : 683
Book Description
This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields.
Magnetostatic Waves and Their Application
Author: Pavel Kabos
Publisher: Springer Science & Business Media
ISBN: 9401112460
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Magnetostatic Waves and their Applications is the first book devoted to magnetostatic waves. The book gives a thorough review of the field suitable for scientists, engineers and advanced students involved in magnetism and microwave electronics new to this area. It covers the field from essential physics to applications in microwave electronics, with details of the materials and materials processing methods included.
Publisher: Springer Science & Business Media
ISBN: 9401112460
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Magnetostatic Waves and their Applications is the first book devoted to magnetostatic waves. The book gives a thorough review of the field suitable for scientists, engineers and advanced students involved in magnetism and microwave electronics new to this area. It covers the field from essential physics to applications in microwave electronics, with details of the materials and materials processing methods included.
Microwave Theory and Techniques
Author: Andrey D. Grigorev
Publisher: Cambridge Scholars Publishing
ISBN: 1527515389
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book describes the main principles of microwave circuit theory. It considers transfer from differential values, electric and magnetic fields, used in electromagnetics analysis, as well as voltage and current, used in the analysis of circuits. It explores scattering, admittance, impedance and transmission matrices in detail, as well as the coupling between matrices and network properties. The book also considers the analysis methods of complex microwave networks, based on the decomposition approach, paying special attention to their functionality and construction through numerous diagrams.
Publisher: Cambridge Scholars Publishing
ISBN: 1527515389
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book describes the main principles of microwave circuit theory. It considers transfer from differential values, electric and magnetic fields, used in electromagnetics analysis, as well as voltage and current, used in the analysis of circuits. It explores scattering, admittance, impedance and transmission matrices in detail, as well as the coupling between matrices and network properties. The book also considers the analysis methods of complex microwave networks, based on the decomposition approach, paying special attention to their functionality and construction through numerous diagrams.