Author: Michel Talagrand
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
What Is a Quantum Field Theory?
Author: Michel Talagrand
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
Theory of Interacting Quantum Fields
Author: Alexei L. Rebenko
Publisher: Walter de Gruyter
ISBN: 3110250632
Category : Mathematics
Languages : en
Pages : 588
Book Description
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Publisher: Walter de Gruyter
ISBN: 3110250632
Category : Mathematics
Languages : en
Pages : 588
Book Description
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
An Introduction To Quantum Field Theory
Author: Michael E. Peskin
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Quantum Field Theory
Author: Mark Srednicki
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
No-Nonsense Quantum Field Theory
Author: Jakob Schwichtenberg
Publisher: No-Nonsense Books
ISBN:
Category : Science
Languages : en
Pages : 642
Book Description
Learning quantum field theory doesn’t have to be hard What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Quantum Field Theory now exists. What will you learn from this book? Get to know all fundamental concepts — Grasp what a quantum field is, why we use propagators to describe its behavior, and how Feynman diagrams help us to make sense of field interactions. Learn to describe quantum field theory mathematically — Understand the meaning and origin of the most important equations: the Klein-Gordon equation, the Dirac equation, the Proca equation, the Maxwell equations, and the canonical commutation/anticommutation relations. Master important quantum field theory interactions — Read fully annotated, step-by-step calculations and understand the general algorithm we use to particle interactions. Get an understanding you can be proud of —Learn about advanced topics like renormalization and regularization, spontaneous symmetry breaking, the renormalization group equations, non-perturbative phenomena, and effective field models. No-Nonsense Quantum Field Theory is one the most student-friendly book on quantum field theory ever written. Here’s why. First of all, it's nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”. Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from. The book ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on. Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.
Publisher: No-Nonsense Books
ISBN:
Category : Science
Languages : en
Pages : 642
Book Description
Learning quantum field theory doesn’t have to be hard What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Quantum Field Theory now exists. What will you learn from this book? Get to know all fundamental concepts — Grasp what a quantum field is, why we use propagators to describe its behavior, and how Feynman diagrams help us to make sense of field interactions. Learn to describe quantum field theory mathematically — Understand the meaning and origin of the most important equations: the Klein-Gordon equation, the Dirac equation, the Proca equation, the Maxwell equations, and the canonical commutation/anticommutation relations. Master important quantum field theory interactions — Read fully annotated, step-by-step calculations and understand the general algorithm we use to particle interactions. Get an understanding you can be proud of —Learn about advanced topics like renormalization and regularization, spontaneous symmetry breaking, the renormalization group equations, non-perturbative phenomena, and effective field models. No-Nonsense Quantum Field Theory is one the most student-friendly book on quantum field theory ever written. Here’s why. First of all, it's nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”. Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from. The book ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on. Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.
Quantum Field Theory and Statistical Mechanics
Author: James Glimm
Publisher: Springer Science & Business Media
ISBN: 9780817632755
Category : Science
Languages : en
Pages : 430
Book Description
This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.
Publisher: Springer Science & Business Media
ISBN: 9780817632755
Category : Science
Languages : en
Pages : 430
Book Description
This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.
Nonperturbative Quantum Field Theory
Author: G. Hooft
Publisher: Springer Science & Business Media
ISBN: 1461307295
Category : Science
Languages : en
Pages : 603
Book Description
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Publisher: Springer Science & Business Media
ISBN: 1461307295
Category : Science
Languages : en
Pages : 603
Book Description
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Quantum Physics Workbook For Dummies
Author: Steven Holzner
Publisher: John Wiley & Sons
ISBN: 0470589973
Category : Science
Languages : en
Pages : 312
Book Description
Hands-on practice in solving quantum physics problems Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject. Explains equations in easy-to-understand terms Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!
Publisher: John Wiley & Sons
ISBN: 0470589973
Category : Science
Languages : en
Pages : 312
Book Description
Hands-on practice in solving quantum physics problems Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject. Explains equations in easy-to-understand terms Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!
Quantum Field Theory
Author: G. B. Folland
Publisher: American Mathematical Soc.
ISBN: 0821847058
Category : Mathematics
Languages : en
Pages : 338
Book Description
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam-Weinberg model of electromagnetic and weak interactions.
Publisher: American Mathematical Soc.
ISBN: 0821847058
Category : Mathematics
Languages : en
Pages : 338
Book Description
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam-Weinberg model of electromagnetic and weak interactions.
A Story of Light
Author: M. Y. Han
Publisher: World Scientific
ISBN: 9812560343
Category : Science
Languages : en
Pages : 116
Book Description
This book presents the essential aspects of relativistic quantum field theory, with minimal use of mathematics. It covers the development of quantum field theory from the original quantization of electromagnetic field to the gauge field theory of interactions among quarks and leptons.Aimed at both scientists and non-specialists, it requires only some rudimentary knowledge of the Lagrangian and Hamiltonian formulation of Newtonian mechanics and a basic understanding of the special theory of relativity and quantum mechanics.
Publisher: World Scientific
ISBN: 9812560343
Category : Science
Languages : en
Pages : 116
Book Description
This book presents the essential aspects of relativistic quantum field theory, with minimal use of mathematics. It covers the development of quantum field theory from the original quantization of electromagnetic field to the gauge field theory of interactions among quarks and leptons.Aimed at both scientists and non-specialists, it requires only some rudimentary knowledge of the Lagrangian and Hamiltonian formulation of Newtonian mechanics and a basic understanding of the special theory of relativity and quantum mechanics.