Author: Charles Loewner
Publisher: Courier Corporation
ISBN: 0486462927
Category : Mathematics
Languages : en
Pages : 128
Book Description
Based on lectures by a renowned educator, this book focuses on continuous groups, particularly in terms of applications in geometry and analysis. The author's unique perspectives are illustrated by numerous inventive geometric examples, many of which were inspired by footnotes among the work of Sophus Lie. 1971 edition.
Theory of Continuous Groups
Theory of Transformation Groups I
Author: Sophus Lie
Publisher: Springer
ISBN: 3662462117
Category : Mathematics
Languages : en
Pages : 640
Book Description
This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
Publisher: Springer
ISBN: 3662462117
Category : Mathematics
Languages : en
Pages : 640
Book Description
This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
Mathematical Physical Chemistry
Author: Shu Hotta
Publisher: Springer
ISBN: 9811076715
Category : Science
Languages : en
Pages : 629
Book Description
This book introduces basic concepts of mathematical physics to chemists. Many textbooks and monographs of mathematical physics may appear daunting to them. Unlike other, related books, however, this one contains a practical selection of material, particularly for graduate and undergraduate students majoring in chemistry. The book first describes quantum mechanics and electromagnetism, with the relation between the two being emphasized. Although quantum mechanics covers a broad field in modern physics, the author focuses on a hydrogen(like) atom and a harmonic oscillator with regard to the operator method. This approach helps chemists understand the basic concepts of quantum mechanics aided by their intuitive understanding without abstract argument, as chemists tend to think of natural phenomena and other factors intuitively rather than only logically. The study of light propagation, reflection, and transmission in dielectric media is of fundamental importance. This book explains these processes on the basis of Maxwell equations. The latter half of the volume deals with mathematical physics in terms of vectors and their transformation in a vector space. Finally, as an example of chemical applications, quantum chemical treatment of methane is introduced, including a basic but essential explanation of Green functions and group theory. Methodology developed by the author will also prove to be useful to physicists.
Publisher: Springer
ISBN: 9811076715
Category : Science
Languages : en
Pages : 629
Book Description
This book introduces basic concepts of mathematical physics to chemists. Many textbooks and monographs of mathematical physics may appear daunting to them. Unlike other, related books, however, this one contains a practical selection of material, particularly for graduate and undergraduate students majoring in chemistry. The book first describes quantum mechanics and electromagnetism, with the relation between the two being emphasized. Although quantum mechanics covers a broad field in modern physics, the author focuses on a hydrogen(like) atom and a harmonic oscillator with regard to the operator method. This approach helps chemists understand the basic concepts of quantum mechanics aided by their intuitive understanding without abstract argument, as chemists tend to think of natural phenomena and other factors intuitively rather than only logically. The study of light propagation, reflection, and transmission in dielectric media is of fundamental importance. This book explains these processes on the basis of Maxwell equations. The latter half of the volume deals with mathematical physics in terms of vectors and their transformation in a vector space. Finally, as an example of chemical applications, quantum chemical treatment of methane is introduced, including a basic but essential explanation of Green functions and group theory. Methodology developed by the author will also prove to be useful to physicists.
Group Theory for Physicists
Author: Zhongqi Ma
Publisher: World Scientific
ISBN: 9812771417
Category : Science
Languages : en
Pages : 512
Book Description
This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.
Publisher: World Scientific
ISBN: 9812771417
Category : Science
Languages : en
Pages : 512
Book Description
This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.
Group Theory
Author: Morton Hamermesh
Publisher:
ISBN:
Category : Group theory
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Group theory
Languages : en
Pages : 0
Book Description
Group Theory in Physics
Author: Wu-Ki Tung
Publisher: World Scientific
ISBN: 9971966565
Category : Science
Languages : en
Pages : 368
Book Description
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.
Publisher: World Scientific
ISBN: 9971966565
Category : Science
Languages : en
Pages : 368
Book Description
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.
An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Theory of Lie Groups (PMS-8), Volume 8
Author: Claude Chevalley
Publisher: Princeton University Press
ISBN: 1400883857
Category : Mathematics
Languages : en
Pages : 230
Book Description
This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.
Publisher: Princeton University Press
ISBN: 1400883857
Category : Mathematics
Languages : en
Pages : 230
Book Description
This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.
Group Theory in a Nutshell for Physicists
Author: A. Zee
Publisher: Princeton University Press
ISBN: 1400881188
Category : Science
Languages : en
Pages : 632
Book Description
A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)
Publisher: Princeton University Press
ISBN: 1400881188
Category : Science
Languages : en
Pages : 632
Book Description
A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)
Solution of Ordinary Differential Equations by Continuous Groups
Author: George Emanuel
Publisher: CRC Press
ISBN: 1482296292
Category : Mathematics
Languages : en
Pages : 229
Book Description
Written by an engineer and sharply focused on practical matters, Solution of Ordinary Differential Equations by Continuous Groups explores the application of Lie groups to the solution of ordinary differential equations. The author's unique approach treats first- and second-order equations rather like integrals, through the use of extensive tables. The book is replete with exercises and fully worked examples, and it offers a number of new techniques published here for the first time. This singular, user-friendly text provides scientists and engineers with easy access to closed form solutions to nonlinear first- and second-order differential equations.
Publisher: CRC Press
ISBN: 1482296292
Category : Mathematics
Languages : en
Pages : 229
Book Description
Written by an engineer and sharply focused on practical matters, Solution of Ordinary Differential Equations by Continuous Groups explores the application of Lie groups to the solution of ordinary differential equations. The author's unique approach treats first- and second-order equations rather like integrals, through the use of extensive tables. The book is replete with exercises and fully worked examples, and it offers a number of new techniques published here for the first time. This singular, user-friendly text provides scientists and engineers with easy access to closed form solutions to nonlinear first- and second-order differential equations.