Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations PDF Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550

Get Book Here

Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations PDF Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550

Get Book Here

Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

Theory And Applications of Fractional Differential Equations

Theory And Applications of Fractional Differential Equations PDF Author: A. Anatolii Aleksandrovich Kilbas
Publisher: Elsevier Science Limited
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on. In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models. The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models. What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics. This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book. This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory. Key features: - It is mainly application oriented. - It contains a complete theory of Fractional Differential Equations. - It can be used as a postgraduate-level textbook in many different disciplines within science and engineering. - It contains an up-to-date bibliography. - It provides problems and directions for further investigations. - Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. - It contains many examples. - and so on!

Theory And Applications of Fractional Differential Equations

Theory And Applications of Fractional Differential Equations PDF Author: A. Anatolii Aleksandrovich Kilbas
Publisher: Elsevier Science Limited
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on. In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models. The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models. What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics. This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book. This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory. Key features: - It is mainly application oriented. - It contains a complete theory of Fractional Differential Equations. - It can be used as a postgraduate-level textbook in many different disciplines within science and engineering. - It contains an up-to-date bibliography. - It provides problems and directions for further investigations. - Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. - It contains many examples. - and so on!

Fractional Differential Equations

Fractional Differential Equations PDF Author: Igor Podlubny
Publisher: Elsevier
ISBN: 0080531989
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations PDF Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571668
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Juan J. Nieto
Publisher: MDPI
ISBN: 3039217321
Category : Mathematics
Languages : en
Pages : 172

Get Book Here

Book Description
Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.

Fractional Order Systems—Control Theory and Applications

Fractional Order Systems—Control Theory and Applications PDF Author: Omar Naifar
Publisher: Springer Nature
ISBN: 3030714462
Category : Technology & Engineering
Languages : en
Pages : 224

Get Book Here

Book Description
This book aims to bring together the latest innovative knowledge, analysis, and synthesis of fractional control problems of nonlinear systems as well as some related applications. Fractional order systems (FOS) are dynamical systems that can be modelled by a fractional differential equation carried with a non-integer derivative. In the last few decades, the growth of science and engineering systems has considerably stimulated the employment of fractional calculus in many subjects of control theory, for example, in stability, stabilization, controllability, observability, observer design, and fault estimation. The application of control theory in FOS is an important issue in many engineering applications. So, to accurately describe these systems, the fractional order differential equations have been introduced.

Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics PDF Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Time-Fractional Differential Equations

Time-Fractional Differential Equations PDF Author: Adam Kubica
Publisher: Springer Nature
ISBN: 9811590664
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.