Author: Alejandro Toro-Labbé
Publisher: Elsevier Science Limited
ISBN: 9780444527196
Category : Science
Languages : en
Pages : 321
Book Description
A broad overview of recent theoretical and computational developments in the field of chemical reactivity. The book contains contributions written by eminent specialists which deal with various aspects of the subject, going from theoretical developments to applications in interesting molecular systems and clusters.
Theoretical Aspects of Chemical Reactivity
Author: Alejandro Toro-Labbé
Publisher: Elsevier Science Limited
ISBN: 9780444527196
Category : Science
Languages : en
Pages : 321
Book Description
A broad overview of recent theoretical and computational developments in the field of chemical reactivity. The book contains contributions written by eminent specialists which deal with various aspects of the subject, going from theoretical developments to applications in interesting molecular systems and clusters.
Publisher: Elsevier Science Limited
ISBN: 9780444527196
Category : Science
Languages : en
Pages : 321
Book Description
A broad overview of recent theoretical and computational developments in the field of chemical reactivity. The book contains contributions written by eminent specialists which deal with various aspects of the subject, going from theoretical developments to applications in interesting molecular systems and clusters.
Theoretical Aspects of Chemical Reactivity
Author:
Publisher: Elsevier
ISBN: 0080466788
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Theoretical Aspects of Chemical Reactivity provides a broad overview of recent theoretical and computational advancements in the field of chemical reactivity. Contributions have been made by a number of leaders in the field covering theoretical developments to applications in molecular systems and clusters. With an increase in the use of reactivity descriptors, and fundamental theoretical aspects becoming more challenging, this volume serves as an interesting overview where traditional concepts are revisited and explored from new viewpoints, and new varieties of reactivity descriptors are proposed. Includes applications in the frontiers of reactivity principles, and introduces dynamic and statistical viewpoints to chemical reactivity and challenging traditional concepts such as aromaticity. * Written by specialists in the field of chemical reactivity* An authoritative overview of the research and progress * An essential reference material for students
Publisher: Elsevier
ISBN: 0080466788
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Theoretical Aspects of Chemical Reactivity provides a broad overview of recent theoretical and computational advancements in the field of chemical reactivity. Contributions have been made by a number of leaders in the field covering theoretical developments to applications in molecular systems and clusters. With an increase in the use of reactivity descriptors, and fundamental theoretical aspects becoming more challenging, this volume serves as an interesting overview where traditional concepts are revisited and explored from new viewpoints, and new varieties of reactivity descriptors are proposed. Includes applications in the frontiers of reactivity principles, and introduces dynamic and statistical viewpoints to chemical reactivity and challenging traditional concepts such as aromaticity. * Written by specialists in the field of chemical reactivity* An authoritative overview of the research and progress * An essential reference material for students
Chemical Reactivity Theory
Author: Pratim Kumar Chattaraj
Publisher: CRC Press
ISBN: 1420065440
Category : Science
Languages : en
Pages : 612
Book Description
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 diffe
Publisher: CRC Press
ISBN: 1420065440
Category : Science
Languages : en
Pages : 612
Book Description
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 diffe
Graph Theoretical Approaches to Chemical Reactivity
Author: Danail D. Bonchev
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Chemical Reactivity
Author: Savas Kaya
Publisher: Elsevier
ISBN: 032390257X
Category : Science
Languages : en
Pages : 606
Book Description
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis. Provides readers with the key information needed to gain a good overview of contemporary chemical reactivity studies and a clear understanding of the theory behind state-of-the-art methods in the field Highlights advances in the computational descriptions of reactivity, including reactivity in confined environments, conceptual density functional theory, and multi-reference quantum chemistry Provides comprehensive coverage by consolidating the knowledge of many well-known researchers in the field from around the world
Publisher: Elsevier
ISBN: 032390257X
Category : Science
Languages : en
Pages : 606
Book Description
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis. Provides readers with the key information needed to gain a good overview of contemporary chemical reactivity studies and a clear understanding of the theory behind state-of-the-art methods in the field Highlights advances in the computational descriptions of reactivity, including reactivity in confined environments, conceptual density functional theory, and multi-reference quantum chemistry Provides comprehensive coverage by consolidating the knowledge of many well-known researchers in the field from around the world
Reaction Rate Theory and Rare Events
Author: Baron Peters
Publisher: Elsevier
ISBN: 0444594701
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises
Publisher: Elsevier
ISBN: 0444594701
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises
Theoretical and Physical Principles of Organic Reactivity
Author: Addy Pross
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 320
Book Description
This approach to the general problem of organic reactivity combines classical organic chemistry with new theoretical ideas developed by the author. The text contains a non-mathematical description of the curve crossing model, expressed in the language of qualitative valence bond theory.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 320
Book Description
This approach to the general problem of organic reactivity combines classical organic chemistry with new theoretical ideas developed by the author. The text contains a non-mathematical description of the curve crossing model, expressed in the language of qualitative valence bond theory.
Solvent Effects and Chemical Reactivity
Author: Orlando Tapia
Publisher: Springer Science & Business Media
ISBN: 0306469316
Category : Science
Languages : en
Pages : 383
Book Description
This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.
Publisher: Springer Science & Business Media
ISBN: 0306469316
Category : Science
Languages : en
Pages : 383
Book Description
This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.
Cold Chemistry
Author: Olivier Dulieu
Publisher: Royal Society of Chemistry
ISBN: 1788013557
Category : Science
Languages : en
Pages : 692
Book Description
Recent years have seen tremendous progress in research on cold and controlled molecular collisions, both in theory and in experiment. The advent of techniques to prepare cold and ultracold molecules and ions, to store them in optical lattices or in charged quasicristalline structures, and to use them in crossed or merged beam experiments have opened many new possibilities to study the most fundamental aspects of molecular interactions. At the same time, theoretical work has made progress in tackling these problems and accurately describing quantum effects in complex systems, and in proposing viable options to control chemical reactions at ultralow energies. Through tutorials on both the theoretical and experimental aspects of research in cold and ultracold molecular collisions, this book provides advanced undergraduate students, graduate students and researchers with the foundations needed to understand this exciting field.
Publisher: Royal Society of Chemistry
ISBN: 1788013557
Category : Science
Languages : en
Pages : 692
Book Description
Recent years have seen tremendous progress in research on cold and controlled molecular collisions, both in theory and in experiment. The advent of techniques to prepare cold and ultracold molecules and ions, to store them in optical lattices or in charged quasicristalline structures, and to use them in crossed or merged beam experiments have opened many new possibilities to study the most fundamental aspects of molecular interactions. At the same time, theoretical work has made progress in tackling these problems and accurately describing quantum effects in complex systems, and in proposing viable options to control chemical reactions at ultralow energies. Through tutorials on both the theoretical and experimental aspects of research in cold and ultracold molecular collisions, this book provides advanced undergraduate students, graduate students and researchers with the foundations needed to understand this exciting field.
Information Theory of Molecular Systems
Author: Roman F Nalewajski
Publisher: Elsevier
ISBN: 0080459749
Category : Science
Languages : en
Pages : 463
Book Description
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity.·Provides powerful tools for tackling both classical and new problems in the theory of the molecular electronic structure and chemical reactivity·Introduces basic concepts of the modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT)·Outlines main ideas and techniques of Information Theory
Publisher: Elsevier
ISBN: 0080459749
Category : Science
Languages : en
Pages : 463
Book Description
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity.·Provides powerful tools for tackling both classical and new problems in the theory of the molecular electronic structure and chemical reactivity·Introduces basic concepts of the modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT)·Outlines main ideas and techniques of Information Theory