Author: Alyssa Ney
Publisher: Oxford University Press
ISBN: 0190097728
Category : Philosophy
Languages : en
Pages : 272
Book Description
If quantum theories of the world are true-and empirical evidence suggests they are-what do they tell us about us, and the world? How should quantum theories make us reevaluate our classical conceptions of material objects? Nearly a century after the development of quantum theories, a consensus has yet to emerge. Many still wonder about what these theories may be telling us about ourselves and our place in the universe. Alyssa Ney here defends and develops a particular framework for understanding the world as it is described by quantum theories. This framework was initially suggested by Schrödinger in the 1920's and was further defended as an account of reality by two philosophers of physics in the 1990's who described it as a necessary point of view for those who argue that quantum theories are correct representations of our world. This framework is called wave function realism, which interprets quantum theories such that its central object is the quantum wave function, interpreted as a field on an extremely high-dimension space. This theory views us, and all objects, as ultimately constituted out of the wave function, and though we seem to occupy three dimensions, the fundamental spatial framework of quantum worlds consists of many more dimensions. Alyssa Ney argues for and advances this view, with the goal of making a case for how this theory how it might be applied to more other relativistic quantum theories, including quantum field theories. Her conclusion develops an account of how we as human beings might ultimately see ourselves and the objects around us as constituted out of the wave function.
The World in the Wave Function
Author: Alyssa Ney
Publisher: Oxford University Press
ISBN: 0190097728
Category : Philosophy
Languages : en
Pages : 272
Book Description
If quantum theories of the world are true-and empirical evidence suggests they are-what do they tell us about us, and the world? How should quantum theories make us reevaluate our classical conceptions of material objects? Nearly a century after the development of quantum theories, a consensus has yet to emerge. Many still wonder about what these theories may be telling us about ourselves and our place in the universe. Alyssa Ney here defends and develops a particular framework for understanding the world as it is described by quantum theories. This framework was initially suggested by Schrödinger in the 1920's and was further defended as an account of reality by two philosophers of physics in the 1990's who described it as a necessary point of view for those who argue that quantum theories are correct representations of our world. This framework is called wave function realism, which interprets quantum theories such that its central object is the quantum wave function, interpreted as a field on an extremely high-dimension space. This theory views us, and all objects, as ultimately constituted out of the wave function, and though we seem to occupy three dimensions, the fundamental spatial framework of quantum worlds consists of many more dimensions. Alyssa Ney argues for and advances this view, with the goal of making a case for how this theory how it might be applied to more other relativistic quantum theories, including quantum field theories. Her conclusion develops an account of how we as human beings might ultimately see ourselves and the objects around us as constituted out of the wave function.
Publisher: Oxford University Press
ISBN: 0190097728
Category : Philosophy
Languages : en
Pages : 272
Book Description
If quantum theories of the world are true-and empirical evidence suggests they are-what do they tell us about us, and the world? How should quantum theories make us reevaluate our classical conceptions of material objects? Nearly a century after the development of quantum theories, a consensus has yet to emerge. Many still wonder about what these theories may be telling us about ourselves and our place in the universe. Alyssa Ney here defends and develops a particular framework for understanding the world as it is described by quantum theories. This framework was initially suggested by Schrödinger in the 1920's and was further defended as an account of reality by two philosophers of physics in the 1990's who described it as a necessary point of view for those who argue that quantum theories are correct representations of our world. This framework is called wave function realism, which interprets quantum theories such that its central object is the quantum wave function, interpreted as a field on an extremely high-dimension space. This theory views us, and all objects, as ultimately constituted out of the wave function, and though we seem to occupy three dimensions, the fundamental spatial framework of quantum worlds consists of many more dimensions. Alyssa Ney argues for and advances this view, with the goal of making a case for how this theory how it might be applied to more other relativistic quantum theories, including quantum field theories. Her conclusion develops an account of how we as human beings might ultimately see ourselves and the objects around us as constituted out of the wave function.
The Wave Function
Author: Alyssa Ney
Publisher: Oxford University Press
ISBN: 0190240725
Category : Philosophy
Languages : en
Pages : 256
Book Description
This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? This collection includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.
Publisher: Oxford University Press
ISBN: 0190240725
Category : Philosophy
Languages : en
Pages : 256
Book Description
This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? This collection includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.
The World in the Wave Function
Author: Alyssa Ney
Publisher: Oxford University Press
ISBN: 019009771X
Category : Philosophy
Languages : en
Pages : 289
Book Description
"What are the ontological implications of quantum theories, that is, what do they tell us about the fundamental objects that make up our world? How should quantum theories make us reevaluate our classical conceptions of the basic constitution of material objects and ourselves? Is there fundamental quantum nonlocality? This book articulates several rival approaches to answering these questions, ultimately defending the wave function realist approach. It is a way of interpreting quantum theories so that the central object they describe is the quantum wave function, interpreted as a field, and that the nonseparability and nonlocality we seem to find in quantum mechanics are ultimately manifestations of a more intuitive, separable and local picture in higher dimensions. quantum mechanics, quantum field theory, wave function, wave function realism, measurement problem, macro-object problem, primitive ontology, quantum entanglement, quantum nonlocality, quantum ontology"--
Publisher: Oxford University Press
ISBN: 019009771X
Category : Philosophy
Languages : en
Pages : 289
Book Description
"What are the ontological implications of quantum theories, that is, what do they tell us about the fundamental objects that make up our world? How should quantum theories make us reevaluate our classical conceptions of the basic constitution of material objects and ourselves? Is there fundamental quantum nonlocality? This book articulates several rival approaches to answering these questions, ultimately defending the wave function realist approach. It is a way of interpreting quantum theories so that the central object they describe is the quantum wave function, interpreted as a field, and that the nonseparability and nonlocality we seem to find in quantum mechanics are ultimately manifestations of a more intuitive, separable and local picture in higher dimensions. quantum mechanics, quantum field theory, wave function, wave function realism, measurement problem, macro-object problem, primitive ontology, quantum entanglement, quantum nonlocality, quantum ontology"--
Something Deeply Hidden
Author: Sean Carroll
Publisher: Penguin
ISBN: 1524743038
Category : Science
Languages : en
Pages : 369
Book Description
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
Publisher: Penguin
ISBN: 1524743038
Category : Science
Languages : en
Pages : 369
Book Description
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
The Meaning of the Wave Function
Author: Shan Gao
Publisher: Cambridge University Press
ISBN: 1107124352
Category : Science
Languages : en
Pages : 201
Book Description
Covering much of the recent debate, this ambitious text provides new, decisive proof of the reality of the wave function.
Publisher: Cambridge University Press
ISBN: 1107124352
Category : Science
Languages : en
Pages : 201
Book Description
Covering much of the recent debate, this ambitious text provides new, decisive proof of the reality of the wave function.
Quantum Ontology
Author: Peter J. Lewis
Publisher: Oxford University Press
ISBN: 0190618795
Category : Philosophy
Languages : en
Pages : 233
Book Description
Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view.
Publisher: Oxford University Press
ISBN: 0190618795
Category : Philosophy
Languages : en
Pages : 233
Book Description
Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view.
The Biggest Ideas in the Universe
Author: Sean Carroll
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Do Wave Functions Jump?
Author: Valia Allori
Publisher: Springer Nature
ISBN: 3030467775
Category : Science
Languages : en
Pages : 430
Book Description
This book is a tribute to the scientific legacy of GianCarlo Ghirardi, who was one of the most influential scientists in the field of modern foundations of quantum theory. In this appraisal, contributions from friends, collaborators and colleagues reflect the influence of his world of thoughts on theory, experiments and philosophy, while also offering prospects for future research in the foundations of quantum physics. The themes of the contributions revolve around the physical reality of the wave function and its notorious collapse, randomness, relativity and experiments.
Publisher: Springer Nature
ISBN: 3030467775
Category : Science
Languages : en
Pages : 430
Book Description
This book is a tribute to the scientific legacy of GianCarlo Ghirardi, who was one of the most influential scientists in the field of modern foundations of quantum theory. In this appraisal, contributions from friends, collaborators and colleagues reflect the influence of his world of thoughts on theory, experiments and philosophy, while also offering prospects for future research in the foundations of quantum physics. The themes of the contributions revolve around the physical reality of the wave function and its notorious collapse, randomness, relativity and experiments.
University Physics
Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
The Many-Worlds Interpretation of Quantum Mechanics
Author: Bryce Seligman Dewitt
Publisher: Princeton University Press
ISBN: 140086805X
Category : Science
Languages : en
Pages : 264
Book Description
A novel interpretation of quantum mechanics, first proposed in brief form by Hugh Everett in 1957, forms the nucleus around which this book has developed. In his interpretation, Dr. Everett denies the existence of a separate classical realm and asserts the propriety of considering a state vector for the whole universe. Because this state vector never collapses, reality as a whole is rigorously deterministic. This reality, which is described jointly by the dynamical variables and the state vector, is not the reality customarily perceived; rather, it is a reality composed of many worlds. By virtue of the temporal development of the dynamical variables, the state vector decomposes naturally into orthogonal vectors, reflecting a continual splitting of the universe into a multitude of mutually unobservable but equally real worlds, in each of which every good measurement has yielded a definite result, and in most of which the familiar statistical quantum laws hold. The volume contains Dr. Everett's short paper from 1957, "'Relative State' Formulation of Quantum Mechanics," and a far longer exposition of his interpretation, entitled "The Theory of the Universal Wave Function," never before published. In addition, other papers by Wheeler, DeWitt, Graham, and Cooper and Van Vechten provide further discussion of the same theme. Together, they constitute virtually the entire world output of scholarly commentary on the Everett interpretation. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 140086805X
Category : Science
Languages : en
Pages : 264
Book Description
A novel interpretation of quantum mechanics, first proposed in brief form by Hugh Everett in 1957, forms the nucleus around which this book has developed. In his interpretation, Dr. Everett denies the existence of a separate classical realm and asserts the propriety of considering a state vector for the whole universe. Because this state vector never collapses, reality as a whole is rigorously deterministic. This reality, which is described jointly by the dynamical variables and the state vector, is not the reality customarily perceived; rather, it is a reality composed of many worlds. By virtue of the temporal development of the dynamical variables, the state vector decomposes naturally into orthogonal vectors, reflecting a continual splitting of the universe into a multitude of mutually unobservable but equally real worlds, in each of which every good measurement has yielded a definite result, and in most of which the familiar statistical quantum laws hold. The volume contains Dr. Everett's short paper from 1957, "'Relative State' Formulation of Quantum Mechanics," and a far longer exposition of his interpretation, entitled "The Theory of the Universal Wave Function," never before published. In addition, other papers by Wheeler, DeWitt, Graham, and Cooper and Van Vechten provide further discussion of the same theme. Together, they constitute virtually the entire world output of scholarly commentary on the Everett interpretation. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.