Author: Brian R. Hunt
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
The Theory of Chaotic Attractors
Author: Brian R. Hunt
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
The Theory of Chaotic Attractors
Author: Brian R. Hunt
Publisher:
ISBN: 9781468495904
Category :
Languages : en
Pages : 528
Book Description
Publisher:
ISBN: 9781468495904
Category :
Languages : en
Pages : 528
Book Description
Chaotic Evolution and Strange Attractors
Author: David Ruelle
Publisher: Cambridge University Press
ISBN: 9780521368308
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book, based on lectures given at the Accademia dei Lincei, is an accessible and leisurely account of systems that display a chaotic time evolution. This behaviour, though deterministic, has features more characteristic of stochastic systems. The analysis here is based on a statistical technique known as time series analysis and so avoids complex mathematics, yet provides a good understanding of the fundamentals. Professor Ruelle is one of the world's authorities on chaos and dynamical systems and his account here will be welcomed by scientists in physics, engineering, biology, chemistry and economics who encounter nonlinear systems in their research.
Publisher: Cambridge University Press
ISBN: 9780521368308
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book, based on lectures given at the Accademia dei Lincei, is an accessible and leisurely account of systems that display a chaotic time evolution. This behaviour, though deterministic, has features more characteristic of stochastic systems. The analysis here is based on a statistical technique known as time series analysis and so avoids complex mathematics, yet provides a good understanding of the fundamentals. Professor Ruelle is one of the world's authorities on chaos and dynamical systems and his account here will be welcomed by scientists in physics, engineering, biology, chemistry and economics who encounter nonlinear systems in their research.
A Gallery of Chua Attractors
Author: Eleonora Bilotta
Publisher: World Scientific
ISBN: 9812790624
Category : Mathematics
Languages : en
Pages : 607
Book Description
Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).
Publisher: World Scientific
ISBN: 9812790624
Category : Mathematics
Languages : en
Pages : 607
Book Description
Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).
The Chaos Theory of Careers
Author: Robert Pryor
Publisher: Routledge
ISBN: 113523129X
Category : Business & Economics
Languages : en
Pages : 255
Book Description
The Chaos Theory of Careers outlines the application of chaos theory to the field of career development. It draws together and extends the work that the authors have been doing over the last 8 to 10 years. This text represents a new perspective on the nature of career development. It emphasizes the dimensions of careers frequently neglected by contemporary accounts of careers such as the challenges and opportunities of uncertainty, the interconnectedness of current life and the potential for information overload, career wisdom as a response to unplanned change, new approaches to vocational assessment based on emergent thinking, the place of spirituality and the search for meaning and purpose in, with and through work, the integration of being and becoming as dimensions of career development. It will be vital reading for all those working in and studying career development, either at advanced undergraduate or postgraduate level and provides a new and refreshing approach to this fast changing subject. Key themes include: Factors such as complexity, change, and contribution People's aspirations in relation to work and personal fulfilment Contemporary realities of career choice, career development and the working world
Publisher: Routledge
ISBN: 113523129X
Category : Business & Economics
Languages : en
Pages : 255
Book Description
The Chaos Theory of Careers outlines the application of chaos theory to the field of career development. It draws together and extends the work that the authors have been doing over the last 8 to 10 years. This text represents a new perspective on the nature of career development. It emphasizes the dimensions of careers frequently neglected by contemporary accounts of careers such as the challenges and opportunities of uncertainty, the interconnectedness of current life and the potential for information overload, career wisdom as a response to unplanned change, new approaches to vocational assessment based on emergent thinking, the place of spirituality and the search for meaning and purpose in, with and through work, the integration of being and becoming as dimensions of career development. It will be vital reading for all those working in and studying career development, either at advanced undergraduate or postgraduate level and provides a new and refreshing approach to this fast changing subject. Key themes include: Factors such as complexity, change, and contribution People's aspirations in relation to work and personal fulfilment Contemporary realities of career choice, career development and the working world
High-Dimensional Chaotic and Attractor Systems
Author: Vladimir G. Ivancevic
Publisher: Intelligent Systems, Control and Automation: Science and Engineering
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 728
Book Description
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
Publisher: Intelligent Systems, Control and Automation: Science and Engineering
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 728
Book Description
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
Hyperbolic Chaos
Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318
Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318
Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Turbulence, Strange Attractors And Chaos
Author: David Ruelle
Publisher: World Scientific
ISBN: 9814500240
Category : Science
Languages : en
Pages : 489
Book Description
The present collection of reprints covers the main contributions of David Ruelle, and coauthors, to the theory of chaos and its applications. Several of the papers reproduced here are classics in the field. Others (that were published in less accessible places) may still surprise the reader.The collection contains mathematical articles relevant to chaos, specific articles on the theory, and articles on applications to hydrodynamical turbulence, chemical oscillations, etc.A sound judgement of the value of techniques and applications is crucial in the interdisciplinary field of chaos. For a critical assessment of what has been achieved in this area, the present volume is an invaluable contribution.
Publisher: World Scientific
ISBN: 9814500240
Category : Science
Languages : en
Pages : 489
Book Description
The present collection of reprints covers the main contributions of David Ruelle, and coauthors, to the theory of chaos and its applications. Several of the papers reproduced here are classics in the field. Others (that were published in less accessible places) may still surprise the reader.The collection contains mathematical articles relevant to chaos, specific articles on the theory, and articles on applications to hydrodynamical turbulence, chemical oscillations, etc.A sound judgement of the value of techniques and applications is crucial in the interdisciplinary field of chaos. For a critical assessment of what has been achieved in this area, the present volume is an invaluable contribution.
Robust Chaos And Its Applications
Author: Zeraoulia Elhadj
Publisher: World Scientific
ISBN: 9814458090
Category : Mathematics
Languages : en
Pages : 473
Book Description
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems (more than 260 in the whole book) intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular./a
Publisher: World Scientific
ISBN: 9814458090
Category : Mathematics
Languages : en
Pages : 473
Book Description
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems (more than 260 in the whole book) intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular./a
Handbook of Applications of Chaos Theory
Author: Christos H. Skiadas
Publisher: CRC Press
ISBN: 1466590440
Category : Mathematics
Languages : en
Pages : 934
Book Description
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincaré disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
Publisher: CRC Press
ISBN: 1466590440
Category : Mathematics
Languages : en
Pages : 934
Book Description
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincaré disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.