The The Applied Data Science Workshop

The The Applied Data Science Workshop PDF Author: Alex Galea
Publisher: Packt Publishing Ltd
ISBN: 180020700X
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Designed with beginners in mind, this workshop helps you make the most of Python libraries and the Jupyter Notebook’s functionality to understand how data science can be applied to solve real-world data problems. Key FeaturesGain useful insights into data science and machine learningExplore the different functionalities and features of a Jupyter NotebookDiscover how Python libraries are used with Jupyter for data analysisBook Description From banking and manufacturing through to education and entertainment, using data science for business has revolutionized almost every sector in the modern world. It has an important role to play in everything from app development to network security. Taking an interactive approach to learning the fundamentals, this book is ideal for beginners. You’ll learn all the best practices and techniques for applying data science in the context of real-world scenarios and examples. Starting with an introduction to data science and machine learning, you’ll start by getting to grips with Jupyter functionality and features. You’ll use Python libraries like sci-kit learn, pandas, Matplotlib, and Seaborn to perform data analysis and data preprocessing on real-world datasets from within your own Jupyter environment. Progressing through the chapters, you’ll train classification models using sci-kit learn, and assess model performance using advanced validation techniques. Towards the end, you’ll use Jupyter Notebooks to document your research, build stakeholder reports, and even analyze web performance data. By the end of The Applied Data Science Workshop, you’ll be prepared to progress from being a beginner to taking your skills to the next level by confidently applying data science techniques and tools to real-world projects. What you will learnUnderstand the key opportunities and challenges in data scienceUse Jupyter for data science tasks such as data analysis and modelingRun exploratory data analysis within a Jupyter NotebookVisualize data with pairwise scatter plots and segmented distributionAssess model performance with advanced validation techniquesParse HTML responses and analyze HTTP requestsWho this book is for If you are an aspiring data scientist who wants to build a career in data science or a developer who wants to explore the applications of data science from scratch and analyze data in Jupyter using Python libraries, then this book is for you. Although a brief understanding of Python programming and machine learning is recommended to help you grasp the topics covered in the book more quickly, it is not mandatory.

The The Applied Data Science Workshop

The The Applied Data Science Workshop PDF Author: Alex Galea
Publisher: Packt Publishing Ltd
ISBN: 180020700X
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Designed with beginners in mind, this workshop helps you make the most of Python libraries and the Jupyter Notebook’s functionality to understand how data science can be applied to solve real-world data problems. Key FeaturesGain useful insights into data science and machine learningExplore the different functionalities and features of a Jupyter NotebookDiscover how Python libraries are used with Jupyter for data analysisBook Description From banking and manufacturing through to education and entertainment, using data science for business has revolutionized almost every sector in the modern world. It has an important role to play in everything from app development to network security. Taking an interactive approach to learning the fundamentals, this book is ideal for beginners. You’ll learn all the best practices and techniques for applying data science in the context of real-world scenarios and examples. Starting with an introduction to data science and machine learning, you’ll start by getting to grips with Jupyter functionality and features. You’ll use Python libraries like sci-kit learn, pandas, Matplotlib, and Seaborn to perform data analysis and data preprocessing on real-world datasets from within your own Jupyter environment. Progressing through the chapters, you’ll train classification models using sci-kit learn, and assess model performance using advanced validation techniques. Towards the end, you’ll use Jupyter Notebooks to document your research, build stakeholder reports, and even analyze web performance data. By the end of The Applied Data Science Workshop, you’ll be prepared to progress from being a beginner to taking your skills to the next level by confidently applying data science techniques and tools to real-world projects. What you will learnUnderstand the key opportunities and challenges in data scienceUse Jupyter for data science tasks such as data analysis and modelingRun exploratory data analysis within a Jupyter NotebookVisualize data with pairwise scatter plots and segmented distributionAssess model performance with advanced validation techniquesParse HTML responses and analyze HTTP requestsWho this book is for If you are an aspiring data scientist who wants to build a career in data science or a developer who wants to explore the applications of data science from scratch and analyze data in Jupyter using Python libraries, then this book is for you. Although a brief understanding of Python programming and machine learning is recommended to help you grasp the topics covered in the book more quickly, it is not mandatory.

The Data Science Workshop

The Data Science Workshop PDF Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 1838983082
Category : Computers
Languages : en
Pages : 817

Get Book Here

Book Description
Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.

THE APPLIED DATA SCIENCE WORKSHOP: Urinary biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI

THE APPLIED DATA SCIENCE WORKSHOP: Urinary biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 327

Get Book Here

Book Description
The Applied Data Science Workshop on "Urinary Biomarkers-Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI" embarks on a comprehensive journey, commencing with an in-depth exploration of the dataset. During this initial phase, the structure and size of the dataset are thoroughly examined, and the various features it contains are meticulously studied. The principal objective is to understand the relationship between these features and the target variable, which, in this case, is the diagnosis of pancreatic cancer. The distribution of each feature is analyzed, and potential patterns, trends, or outliers that could significantly impact the model's performance are identified. To ensure the data is in optimal condition for model training, preprocessing steps are undertaken. This involves handling missing values through imputation techniques, such as mean, median, or interpolation, depending on the nature of the data. Additionally, feature engineering is performed to derive new features or transform existing ones, with the aim of enhancing the model's predictive power. In preparation for model building, the dataset is split into training and testing sets. This division is crucial to assess the models' generalization performance on unseen data accurately. To maintain a balanced representation of classes in both sets, stratified sampling is employed, mitigating potential biases in the model evaluation process. The workshop explores an array of machine learning classifiers suitable for pancreatic cancer classification, such as Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, Naïve Bayes, and Multi-Layer Perceptron (MLP). For each classifier, three different preprocessing techniques are applied to investigate their impact on model performance: raw (unprocessed data), normalization (scaling data to a similar range), and standardization (scaling data to have zero mean and unit variance). To optimize the classifiers' hyperparameters and boost their predictive capabilities, GridSearchCV, a technique for hyperparameter tuning, is employed. GridSearchCV conducts an exhaustive search over a specified hyperparameter grid, evaluating different combinations to identify the optimal settings for each model and preprocessing technique. During the model evaluation phase, multiple performance metrics are utilized to gauge the efficacy of the classifiers. Commonly used metrics include accuracy, recall, precision, and F1-score. By comprehensively assessing these metrics, the strengths and weaknesses of each model are revealed, enabling a deeper understanding of their performance across different classes of pancreatic cancer. Classification reports are generated to present a detailed breakdown of the models' performance, including precision, recall, F1-score, and support for each class. These reports serve as valuable tools for interpreting model outputs and identifying areas for potential improvement. The workshop highlights the significance of graphical user interfaces (GUIs) in facilitating user interactions with machine learning models. By integrating PyQt, a powerful GUI development library for Python, participants create a user-friendly interface that enables users to interact with the models effortlessly. The GUI provides options to select different preprocessing techniques, visualize model outputs such as confusion matrices and decision boundaries, and gain insights into the models' classification capabilities. One of the primary advantages of the graphical user interface is its ability to offer users a seamless and intuitive experience in predicting and classifying pancreatic cancer based on urinary biomarkers. The GUI empowers users to make informed decisions by allowing them to compare the performance of different classifiers under various preprocessing techniques. Throughout the workshop, a strong emphasis is placed on the significance of proper data preprocessing, hyperparameter tuning, and robust model evaluation. These crucial steps contribute to building accurate and reliable machine learning models for pancreatic cancer prediction. By the culmination of the workshop, participants have gained valuable hands-on experience in data exploration, machine learning model building, hyperparameter tuning, and GUI development, all geared towards addressing the specific challenge of pancreatic cancer classification and prediction. In conclusion, the Applied Data Science Workshop on "Urinary Biomarkers-Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI" embarks on a comprehensive and transformative journey, bringing together data exploration, preprocessing, machine learning model selection, hyperparameter tuning, model evaluation, and GUI development. The project's focus on pancreatic cancer prediction using urinary biomarkers aligns with the pressing need for early detection and treatment of this deadly disease. As participants delve into the intricacies of machine learning and medical research, they contribute to the broader scientific community's ongoing efforts to combat cancer and improve patient outcomes. Through the integration of data science methodologies and powerful visualization tools, the workshop exemplifies the potential of machine learning in revolutionizing medical diagnostics and healthcare practices.

Applied Data Science

Applied Data Science PDF Author: Martin Braschler
Publisher: Springer
ISBN: 3030118215
Category : Computers
Languages : en
Pages : 464

Get Book Here

Book Description
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

THE APPLIED DATA SCIENCE WORKSHOP: Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI

THE APPLIED DATA SCIENCE WORKSHOP: Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 357

Get Book Here

Book Description
The Applied Data Science Workshop on Prostate Cancer Classification and Recognition using Machine Learning and Deep Learning with Python GUI involved several steps and components. The project aimed to analyze prostate cancer data, explore the features, develop machine learning models, and create a graphical user interface (GUI) using PyQt5. The project began with data exploration, where the prostate cancer dataset was examined to understand its structure and content. Various statistical techniques were employed to gain insights into the data, such as checking the dimensions, identifying missing values, and examining the distribution of the target variable. The next step involved exploring the distribution of features in the dataset. Visualizations were created to analyze the characteristics and relationships between different features. Histograms, scatter plots, and correlation matrices were used to uncover patterns and identify potential variables that may contribute to the classification of prostate cancer. Machine learning models were then developed to classify prostate cancer based on the available features. Several algorithms, including Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), were implemented. Each model was trained and evaluated using appropriate techniques such as cross-validation and grid search for hyperparameter tuning. The performance of each machine learning model was assessed using evaluation metrics such as accuracy, precision, recall, and F1-score. These metrics provided insights into the effectiveness of the models in accurately classifying prostate cancer cases. Model comparison and selection were based on their performance and the specific requirements of the project. In addition to the machine learning models, a deep learning model based on an Artificial Neural Network (ANN) was implemented. The ANN architecture consisted of multiple layers, including input, hidden, and output layers. The ANN model was trained using the dataset, and its performance was evaluated using accuracy and loss metrics. To provide a user-friendly interface for the project, a GUI was designed using PyQt, a Python library for creating desktop applications. The GUI allowed users to interact with the machine learning models and perform tasks such as selecting the prediction method, loading data, training models, and displaying results. The GUI included various graphical components such as buttons, combo boxes, input fields, and plot windows. These components were designed to facilitate data loading, model training, and result visualization. Users could choose the prediction method, view accuracy scores, classification reports, and confusion matrices, and explore the predicted values compared to the actual values. The GUI also incorporated interactive features such as real-time updates of prediction results based on user selections and dynamic plot generation for visualizing model performance. Users could switch between different prediction methods, observe changes in accuracy, and examine the history of training loss and accuracy through plotted graphs. Data preprocessing techniques, such as standardization and normalization, were applied to ensure the consistency and reliability of the machine learning and deep learning models. The dataset was divided into training and testing sets to assess model performance on unseen data and detect overfitting or underfitting. Model persistence was implemented to save the trained machine learning and deep learning models to disk, allowing for easy retrieval and future use. The saved models could be loaded and utilized within the GUI for prediction tasks without the need for retraining. Overall, the Applied Data Science Workshop on Prostate Cancer Classification and Recognition provided a comprehensive framework for analyzing prostate cancer data, developing machine learning and deep learning models, and creating an interactive GUI. The project aimed to assist in the accurate classification and recognition of prostate cancer cases, facilitating informed decision-making and potentially contributing to improved patient outcomes.

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1574

Get Book Here

Book Description
Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

The Applied Artificial Intelligence Workshop

The Applied Artificial Intelligence Workshop PDF Author: Anthony So
Publisher:
ISBN: 9781800205819
Category : Computers
Languages : en
Pages : 420

Get Book Here

Book Description


The The Data Science Workshop

The The Data Science Workshop PDF Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 1800569408
Category : Computers
Languages : en
Pages : 823

Get Book Here

Book Description
Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key FeaturesGain a full understanding of the model production and deployment processBuild your first machine learning model in just five minutes and get a hands-on machine learning experienceUnderstand how to deal with common challenges in data science projectsBook Description Where there’s data, there’s insight. With so much data being generated, there is immense scope to extract meaningful information that’ll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you’ll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You’ll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you’ll get hands-on with approaches such as grid search and random search. Next, you’ll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You’ll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you’ll have the skills to start working on data science projects confidently. By the end of this book, you’ll have the skills to start working on data science projects confidently. What you will learnExplore the key differences between supervised learning and unsupervised learningManipulate and analyze data using scikit-learn and pandas librariesUnderstand key concepts such as regression, classification, and clusteringDiscover advanced techniques to improve the accuracy of your modelUnderstand how to speed up the process of adding new featuresSimplify your machine learning workflow for productionWho this book is for This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Applied Data Science with Python and Jupyter

Applied Data Science with Python and Jupyter PDF Author: Alex Galea
Publisher: Packt Publishing Ltd
ISBN: 1789951925
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
Become the master player of data exploration by creating reproducible data processing pipelines, visualizations, and prediction models for your applications. Key FeaturesGet up and running with the Jupyter ecosystem and some example datasetsLearn about key machine learning concepts such as SVM, KNN classifiers, and Random ForestsDiscover how you can use web scraping to gather and parse your own bespoke datasetsBook Description Getting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations. What you will learnGet up and running with the Jupyter ecosystemIdentify potential areas of investigation and perform exploratory data analysisPlan a machine learning classification strategy and train classification modelsUse validation curves and dimensionality reduction to tune and enhance your modelsScrape tabular data from web pages and transform it into Pandas DataFramesCreate interactive, web-friendly visualizations to clearly communicate your findingsWho this book is for Applied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.