Author: Charles Richard Leedham-Green
Publisher: Clarendon Press
ISBN: 9780198535485
Category : Mathematics
Languages : en
Pages : 356
Book Description
An important monograph summarizing the development of a classification system of finite p-groups.
The Structure of Groups of Prime Power Order
Author: Charles Richard Leedham-Green
Publisher: Clarendon Press
ISBN: 9780198535485
Category : Mathematics
Languages : en
Pages : 356
Book Description
An important monograph summarizing the development of a classification system of finite p-groups.
Publisher: Clarendon Press
ISBN: 9780198535485
Category : Mathematics
Languages : en
Pages : 356
Book Description
An important monograph summarizing the development of a classification system of finite p-groups.
Groups of Prime Power Order. Volume 1
Author: Yakov Berkovich
Publisher: Walter de Gruyter
ISBN: 3110208229
Category : Mathematics
Languages : en
Pages : 533
Book Description
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p‒1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
Publisher: Walter de Gruyter
ISBN: 3110208229
Category : Mathematics
Languages : en
Pages : 533
Book Description
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p‒1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
Groups of Prime Power Order. Volume 2
Author: Yakov Berkovich
Publisher: Walter de Gruyter
ISBN: 3110208237
Category : Mathematics
Languages : en
Pages : 613
Book Description
This is the second of three volumes devoted to elementary finite p-group theory. Similar to the first volume, hundreds of important results are analyzed and, in many cases, simplified. Important topics presented in this monograph include: (a) classification of p-groups all of whose cyclic subgroups of composite orders are normal, (b) classification of 2-groups with exactly three involutions, (c) two proofs of Ward's theorem on quaternion-free groups, (d) 2-groups with small centralizers of an involution, (e) classification of 2-groups with exactly four cyclic subgroups of order 2n > 2, (f) two new proofs of Blackburn's theorem on minimal nonmetacyclic groups, (g) classification of p-groups all of whose subgroups of index p2 are abelian, (h) classification of 2-groups all of whose minimal nonabelian subgroups have order 8, (i) p-groups with cyclic subgroups of index p2 are classified. This volume contains hundreds of original exercises (with all difficult exercises being solved) and an extended list of about 700 open problems. The book is based on Volume 1, and it is suitable for researchers and graduate students of mathematics with a modest background on algebra.
Publisher: Walter de Gruyter
ISBN: 3110208237
Category : Mathematics
Languages : en
Pages : 613
Book Description
This is the second of three volumes devoted to elementary finite p-group theory. Similar to the first volume, hundreds of important results are analyzed and, in many cases, simplified. Important topics presented in this monograph include: (a) classification of p-groups all of whose cyclic subgroups of composite orders are normal, (b) classification of 2-groups with exactly three involutions, (c) two proofs of Ward's theorem on quaternion-free groups, (d) 2-groups with small centralizers of an involution, (e) classification of 2-groups with exactly four cyclic subgroups of order 2n > 2, (f) two new proofs of Blackburn's theorem on minimal nonmetacyclic groups, (g) classification of p-groups all of whose subgroups of index p2 are abelian, (h) classification of 2-groups all of whose minimal nonabelian subgroups have order 8, (i) p-groups with cyclic subgroups of index p2 are classified. This volume contains hundreds of original exercises (with all difficult exercises being solved) and an extended list of about 700 open problems. The book is based on Volume 1, and it is suitable for researchers and graduate students of mathematics with a modest background on algebra.
Groups of Prime Power Order. Volume 3
Author: Yakov Berkovich
Publisher: Walter de Gruyter
ISBN: 3110254484
Category : Mathematics
Languages : en
Pages : 669
Book Description
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Publisher: Walter de Gruyter
ISBN: 3110254484
Category : Mathematics
Languages : en
Pages : 669
Book Description
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Groups of Prime Power Order. Volume 6
Author: Yakov G. Berkovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110533146
Category : Mathematics
Languages : en
Pages : 410
Book Description
This is the sixth volume of a comprehensive and elementary treatment of finite group theory. This volume contains many hundreds of original exercises (including solutions for the more difficult ones) and an extended list of about 1000 open problems. The current book is based on Volumes 1–5 and it is suitable for researchers and graduate students working in group theory.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110533146
Category : Mathematics
Languages : en
Pages : 410
Book Description
This is the sixth volume of a comprehensive and elementary treatment of finite group theory. This volume contains many hundreds of original exercises (including solutions for the more difficult ones) and an extended list of about 1000 open problems. The current book is based on Volumes 1–5 and it is suitable for researchers and graduate students working in group theory.
Groups of Prime Power Order. Volume 5
Author: Yakov G. Berkovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110389045
Category : Mathematics
Languages : en
Pages : 497
Book Description
This is the fifth volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume include theory of linear algebras and Lie algebras. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110389045
Category : Mathematics
Languages : en
Pages : 497
Book Description
This is the fifth volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume include theory of linear algebras and Lie algebras. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Groups of Prime Power Order. Volume 4
Author: Yakov G. Berkovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110281473
Category : Mathematics
Languages : en
Pages : 476
Book Description
This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa’s theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110281473
Category : Mathematics
Languages : en
Pages : 476
Book Description
This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa’s theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.
Selected Papers on Algebra and Topology by Garrett Birkhoff
Author: J.S. Oliveira
Publisher: Springer Science & Business Media
ISBN: 9780817631147
Category : Science
Languages : en
Pages : 648
Book Description
The present volume of reprints are what I consider to be my most interesting and influential papers on algebra and topology. To tie them together, and to place them in context, I have supplemented them by a series of brief essays sketching their historieal background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas. The papers on universal algebra, lattice theory, and general topology collected in the present volume concern ideas which have become familiar to all working mathematicians. It may be helpful to make them readily accessible in one volume. I have tried in the introduction to each part to state the most significant features of ea ch paper reprinted there, and to indieate later developments. The background that shaped and stimulated my early work on universal algebra, lattice theory, and topology may be of some interest. As a Harvard undergraduate in 1928-32, I was encouraged to do independent reading and to write an original thesis. My tutorial reading included de la Vallee-Poussin's beautiful Cours d'Analyse Infinitesimale, Hausdorff's Grundzüge der Mengenlehre, and Frechet's Espaces Abstraits. In addition, I discovered Caratheodory's 1912 paper "Vber das lineare Mass von Punktmengen" and Hausdorff's 1919 paper on "Dimension und Ausseres Mass," and derived much inspiration from them. A fragment of my thesis, analyzing axiom systems for separable metrizable spaces, was later published [2]. * This background led to the work summarized in Part IV.
Publisher: Springer Science & Business Media
ISBN: 9780817631147
Category : Science
Languages : en
Pages : 648
Book Description
The present volume of reprints are what I consider to be my most interesting and influential papers on algebra and topology. To tie them together, and to place them in context, I have supplemented them by a series of brief essays sketching their historieal background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas. The papers on universal algebra, lattice theory, and general topology collected in the present volume concern ideas which have become familiar to all working mathematicians. It may be helpful to make them readily accessible in one volume. I have tried in the introduction to each part to state the most significant features of ea ch paper reprinted there, and to indieate later developments. The background that shaped and stimulated my early work on universal algebra, lattice theory, and topology may be of some interest. As a Harvard undergraduate in 1928-32, I was encouraged to do independent reading and to write an original thesis. My tutorial reading included de la Vallee-Poussin's beautiful Cours d'Analyse Infinitesimale, Hausdorff's Grundzüge der Mengenlehre, and Frechet's Espaces Abstraits. In addition, I discovered Caratheodory's 1912 paper "Vber das lineare Mass von Punktmengen" and Hausdorff's 1919 paper on "Dimension und Ausseres Mass," and derived much inspiration from them. A fragment of my thesis, analyzing axiom systems for separable metrizable spaces, was later published [2]. * This background led to the work summarized in Part IV.
Computational Group Theory and the Theory of Groups
Author: Luise-Charlotte Kappe
Publisher: American Mathematical Soc.
ISBN: 0821843656
Category : Computers
Languages : en
Pages : 298
Book Description
"The power of general purpose computational algebra systems running on personal computers has increased rapidly in recent years. For mathematicians doing research in group theory, this means a growing set of sophisticated computational tools are now available for their use in developing new theoretical results." "This volume consists of contributions by researchers invited to the AMS Special Session on Computational Group Theory held in March 2007. The main focus of the session was on the application of Computational Group Theory (CGT) to a wide range of theoretical aspects of group theory. The articles in this volume provide a variety of examples of how these computer systems helped to solve interesting theoretical problems within the discipline, such as constructions of finite simple groups, classification of $p$-groups via coclass, representation theory and constructions involving free nilpotent groups. The volume also includes an article by R. F. Morse highlighting applications of CGT in group theory and two survey articles." "Graduate students and researchers interested in various aspects of group theory will find many examples of Computational Group Theory helping research and will recognize it as yet another tool at their disposal."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821843656
Category : Computers
Languages : en
Pages : 298
Book Description
"The power of general purpose computational algebra systems running on personal computers has increased rapidly in recent years. For mathematicians doing research in group theory, this means a growing set of sophisticated computational tools are now available for their use in developing new theoretical results." "This volume consists of contributions by researchers invited to the AMS Special Session on Computational Group Theory held in March 2007. The main focus of the session was on the application of Computational Group Theory (CGT) to a wide range of theoretical aspects of group theory. The articles in this volume provide a variety of examples of how these computer systems helped to solve interesting theoretical problems within the discipline, such as constructions of finite simple groups, classification of $p$-groups via coclass, representation theory and constructions involving free nilpotent groups. The volume also includes an article by R. F. Morse highlighting applications of CGT in group theory and two survey articles." "Graduate students and researchers interested in various aspects of group theory will find many examples of Computational Group Theory helping research and will recognize it as yet another tool at their disposal."--BOOK JACKET.
Groups of Prime Power Order
Author: I︠A︡. G. Berkovich
Publisher: ISSN
ISBN:
Category : Mathematics
Languages : en
Pages : 540
Book Description
Main description: This is the first of three volumes on finite p-group theory. It presents the state of the art and in addition contains numerous new and easy proofs of famous theorems, many exercises (some of them with solutions), and about 1500 open problems. It is expected to be useful to certain applied mathematics areas, such as combinatorics, coding theory, and computer sciences. The book should also be easily comprehensible to students and scientists with some basic knowledge of group theory and algebra.
Publisher: ISSN
ISBN:
Category : Mathematics
Languages : en
Pages : 540
Book Description
Main description: This is the first of three volumes on finite p-group theory. It presents the state of the art and in addition contains numerous new and easy proofs of famous theorems, many exercises (some of them with solutions), and about 1500 open problems. It is expected to be useful to certain applied mathematics areas, such as combinatorics, coding theory, and computer sciences. The book should also be easily comprehensible to students and scientists with some basic knowledge of group theory and algebra.