Author: Rédina Berkachy
Publisher: Springer Nature
ISBN: 303076916X
Category : Computers
Languages : en
Pages : 356
Book Description
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called “FuzzySTs” which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
The Signed Distance Measure in Fuzzy Statistical Analysis
Author: Rédina Berkachy
Publisher: Springer Nature
ISBN: 303076916X
Category : Computers
Languages : en
Pages : 356
Book Description
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called “FuzzySTs” which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
Publisher: Springer Nature
ISBN: 303076916X
Category : Computers
Languages : en
Pages : 356
Book Description
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called “FuzzySTs” which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
Combining, Modelling and Analyzing Imprecision, Randomness and Dependence
Author: Jonathan Ansari
Publisher: Springer Nature
ISBN: 3031659937
Category :
Languages : en
Pages : 579
Book Description
Publisher: Springer Nature
ISBN: 3031659937
Category :
Languages : en
Pages : 579
Book Description
Fuzzy Statistical Inferences Based on Fuzzy Random Variables
Author: Gholamreza Hesamian
Publisher: CRC Press
ISBN: 1000539776
Category : Mathematics
Languages : en
Pages : 313
Book Description
This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models. The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level.
Publisher: CRC Press
ISBN: 1000539776
Category : Mathematics
Languages : en
Pages : 313
Book Description
This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models. The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level.
Fuzzy Statistical Decision-Making
Author: Cengiz Kahraman
Publisher: Springer
ISBN: 3319390147
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas and developments.
Publisher: Springer
ISBN: 3319390147
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas and developments.
Applying Fuzzy Logic for the Digital Economy and Society
Author: Andreas Meier
Publisher: Springer
ISBN: 3030033686
Category : Business & Economics
Languages : en
Pages : 217
Book Description
This edited book presents the state-of-the-art of applying fuzzy logic to managerial decision-making processes in areas such as fuzzy-based portfolio management, recommender systems, performance assessment and risk analysis, among others. Presenting the latest research, with a strong focus on applications and case studies, it is a valuable resource for researchers, practitioners, project leaders and managers wanting to apply or improve their fuzzy-based skills.
Publisher: Springer
ISBN: 3030033686
Category : Business & Economics
Languages : en
Pages : 217
Book Description
This edited book presents the state-of-the-art of applying fuzzy logic to managerial decision-making processes in areas such as fuzzy-based portfolio management, recommender systems, performance assessment and risk analysis, among others. Presenting the latest research, with a strong focus on applications and case studies, it is a valuable resource for researchers, practitioners, project leaders and managers wanting to apply or improve their fuzzy-based skills.
Intuitionistic Fuzzy Sets
Author: Krassimir T. Atanassov
Publisher: Physica
ISBN: 3790818704
Category : Mathematics
Languages : en
Pages : 336
Book Description
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.
Publisher: Physica
ISBN: 3790818704
Category : Mathematics
Languages : en
Pages : 336
Book Description
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.
Uncertainty Management with Fuzzy and Rough Sets
Author: Rafael Bello
Publisher: Springer
ISBN: 303010463X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
Publisher: Springer
ISBN: 303010463X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
Interval-Valued Intuitionistic Fuzzy Sets
Author: Krassimir T. Atanassov
Publisher: Springer Nature
ISBN: 3030320901
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
The book offers a comprehensive survey of interval-valued intuitionistic fuzzy sets. It reports on cutting-edge research carried out by the founder of the intuitionistic fuzzy sets, Prof. Krassimir Atanassov, giving a special emphasis to the practical applications of this extension. A few interesting case studies, such as in the area of data mining, decision making and pattern recognition, among others, are discussed in detail. The book offers the first comprehensive guide on interval-valued intuitionistic fuzzy sets. By providing the readers with a thorough survey and important practical details, it is expected to support them in carrying out applied research and to encourage them to test the theory behind the sets for new advanced applications. The book is a valuable reference resource for graduate students and researchers alike.
Publisher: Springer Nature
ISBN: 3030320901
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
The book offers a comprehensive survey of interval-valued intuitionistic fuzzy sets. It reports on cutting-edge research carried out by the founder of the intuitionistic fuzzy sets, Prof. Krassimir Atanassov, giving a special emphasis to the practical applications of this extension. A few interesting case studies, such as in the area of data mining, decision making and pattern recognition, among others, are discussed in detail. The book offers the first comprehensive guide on interval-valued intuitionistic fuzzy sets. By providing the readers with a thorough survey and important practical details, it is expected to support them in carrying out applied research and to encourage them to test the theory behind the sets for new advanced applications. The book is a valuable reference resource for graduate students and researchers alike.
The Journal of Fuzzy Mathematics
Author:
Publisher:
ISBN:
Category : Fuzzy arithmetic
Languages : en
Pages : 524
Book Description
Publisher:
ISBN:
Category : Fuzzy arithmetic
Languages : en
Pages : 524
Book Description
Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics
Author: Florentin Smarandache
Publisher: Elsevier
ISBN: 0323994571
Category : Computers
Languages : en
Pages : 495
Book Description
Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown. Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data. Introduces the field of neutrosophic statistics and how it can solve problems working with indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data Presents various applications of neutrosophic statistics in the fields of bioinformatics, medicine, cognitive science and agriculture Provides practical examples and definitions of neutrosophic statistics in relation to the various types of indeterminacies
Publisher: Elsevier
ISBN: 0323994571
Category : Computers
Languages : en
Pages : 495
Book Description
Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown. Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data. Introduces the field of neutrosophic statistics and how it can solve problems working with indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data Presents various applications of neutrosophic statistics in the fields of bioinformatics, medicine, cognitive science and agriculture Provides practical examples and definitions of neutrosophic statistics in relation to the various types of indeterminacies