Author: Gabriel Katz
Publisher: World Scientific
ISBN: 9814313599
Category : Mathematics
Languages : en
Pages : 632
Book Description
The Shape of Algebra is the authors' attempt to share their mathematical experiences with readers who have more than a passing interest in mathematics, but have only a traditional exposure to elementary algebra. Secondary school and college teachers and students who want to expand their horizons in the field will find a fresh presentation of familiar concepts and some unexpected results. This book serves as a text for an "appreciation" course in modern mathematics designed for non-mathematics majors or for first-year students who are considering the possibility of studying mathematics or related disciplines. It can also serve as a source of computer-supported activities that could supplement traditional courses in algebra, multivariable calculus, and complex variable. This book gives the reader a sense of the visual nature of mathematics. Mathematical experiments with universal mapping software VisuMatica, designed by Vladimir Nodel'man, form the very core of the book. Readers are encouraged to reproduce, play with, and expand on these experiments. Numerous problems are interspersed throughout the text to guide the reader. Our treatment of standard algebra is visual and computational. By introducing visual computational environments like VisuMatica, our book promotes this geometric approach to algebra and makes it accessible to readers a great deal earlier. The book will enable our readers to approach its content on three levels: the first one which requires only some fluency with elementary algebraic manipulations; the second one which also presumes familiarity with the notions of derivatives and tangent lines to plane curves, and the third one which uses some basic concepts of multivariable calculus. All three levels are clearly marked in the text, and will allow for a smooth reading and virtual experiments, regardless of the level that our readers will find comfortable.
The Shape of Algebra in the Mirrors of Mathematics
Author: Gabriel Katz
Publisher: World Scientific
ISBN: 9814313599
Category : Mathematics
Languages : en
Pages : 632
Book Description
The Shape of Algebra is the authors' attempt to share their mathematical experiences with readers who have more than a passing interest in mathematics, but have only a traditional exposure to elementary algebra. Secondary school and college teachers and students who want to expand their horizons in the field will find a fresh presentation of familiar concepts and some unexpected results. This book serves as a text for an "appreciation" course in modern mathematics designed for non-mathematics majors or for first-year students who are considering the possibility of studying mathematics or related disciplines. It can also serve as a source of computer-supported activities that could supplement traditional courses in algebra, multivariable calculus, and complex variable. This book gives the reader a sense of the visual nature of mathematics. Mathematical experiments with universal mapping software VisuMatica, designed by Vladimir Nodel'man, form the very core of the book. Readers are encouraged to reproduce, play with, and expand on these experiments. Numerous problems are interspersed throughout the text to guide the reader. Our treatment of standard algebra is visual and computational. By introducing visual computational environments like VisuMatica, our book promotes this geometric approach to algebra and makes it accessible to readers a great deal earlier. The book will enable our readers to approach its content on three levels: the first one which requires only some fluency with elementary algebraic manipulations; the second one which also presumes familiarity with the notions of derivatives and tangent lines to plane curves, and the third one which uses some basic concepts of multivariable calculus. All three levels are clearly marked in the text, and will allow for a smooth reading and virtual experiments, regardless of the level that our readers will find comfortable.
Publisher: World Scientific
ISBN: 9814313599
Category : Mathematics
Languages : en
Pages : 632
Book Description
The Shape of Algebra is the authors' attempt to share their mathematical experiences with readers who have more than a passing interest in mathematics, but have only a traditional exposure to elementary algebra. Secondary school and college teachers and students who want to expand their horizons in the field will find a fresh presentation of familiar concepts and some unexpected results. This book serves as a text for an "appreciation" course in modern mathematics designed for non-mathematics majors or for first-year students who are considering the possibility of studying mathematics or related disciplines. It can also serve as a source of computer-supported activities that could supplement traditional courses in algebra, multivariable calculus, and complex variable. This book gives the reader a sense of the visual nature of mathematics. Mathematical experiments with universal mapping software VisuMatica, designed by Vladimir Nodel'man, form the very core of the book. Readers are encouraged to reproduce, play with, and expand on these experiments. Numerous problems are interspersed throughout the text to guide the reader. Our treatment of standard algebra is visual and computational. By introducing visual computational environments like VisuMatica, our book promotes this geometric approach to algebra and makes it accessible to readers a great deal earlier. The book will enable our readers to approach its content on three levels: the first one which requires only some fluency with elementary algebraic manipulations; the second one which also presumes familiarity with the notions of derivatives and tangent lines to plane curves, and the third one which uses some basic concepts of multivariable calculus. All three levels are clearly marked in the text, and will allow for a smooth reading and virtual experiments, regardless of the level that our readers will find comfortable.
The Best Writing on Mathematics 2012
Author: Mircea Pitici
Publisher: Princeton University Press
ISBN: 0691156557
Category : Mathematics
Languages : en
Pages : 321
Book Description
An anthology of the year's finest writing on mathematics from around the world, featuring promising new voices as well as some of the foremost names in mathematics.
Publisher: Princeton University Press
ISBN: 0691156557
Category : Mathematics
Languages : en
Pages : 321
Book Description
An anthology of the year's finest writing on mathematics from around the world, featuring promising new voices as well as some of the foremost names in mathematics.
Mirrors and Reflections
Author: Alexandre V. Borovik
Publisher: Springer Science & Business Media
ISBN: 0387790667
Category : Mathematics
Languages : en
Pages : 172
Book Description
This graduate/advanced undergraduate textbook contains a systematic and elementary treatment of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. Key features include: many important concepts in the proofs are illustrated in simple drawings, which give easy access to the theory; a large number of exercises at various levels of difficulty; some Euclidean geometry is included along with the theory of convex polyhedra; no prerequisites are necessary beyond the basic concepts of linear algebra and group theory; and a good index and bibliography The exposition is directed at advanced undergraduates and first-year graduate students.
Publisher: Springer Science & Business Media
ISBN: 0387790667
Category : Mathematics
Languages : en
Pages : 172
Book Description
This graduate/advanced undergraduate textbook contains a systematic and elementary treatment of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. Key features include: many important concepts in the proofs are illustrated in simple drawings, which give easy access to the theory; a large number of exercises at various levels of difficulty; some Euclidean geometry is included along with the theory of convex polyhedra; no prerequisites are necessary beyond the basic concepts of linear algebra and group theory; and a good index and bibliography The exposition is directed at advanced undergraduates and first-year graduate students.
Beautiful Symmetry
Author: Alex Berke
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Tropical Geometry and Mirror Symmetry
Author: Mark Gross
Publisher: American Mathematical Soc.
ISBN: 0821852329
Category : Mathematics
Languages : en
Pages : 338
Book Description
Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.
Publisher: American Mathematical Soc.
ISBN: 0821852329
Category : Mathematics
Languages : en
Pages : 338
Book Description
Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.
Visual Complex Analysis
Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Maths All Week
Author: June Loewenstein
Publisher: Nelson Thornes
ISBN: 1874099979
Category : Mathematics
Languages : en
Pages : 86
Book Description
This title features case studies on planning A-Z of ideas.
Publisher: Nelson Thornes
ISBN: 1874099979
Category : Mathematics
Languages : en
Pages : 86
Book Description
This title features case studies on planning A-Z of ideas.
Manifold Mirrors
Author: Felipe Cucker
Publisher: Cambridge University Press
ISBN: 1107354498
Category : Mathematics
Languages : en
Pages : 427
Book Description
Most works of art, whether illustrative, musical or literary, are created subject to a set of constraints. In many (but not all) cases, these constraints have a mathematical nature, for example, the geometric transformations governing the canons of J. S. Bach, the various projection systems used in classical painting, the catalog of symmetries found in Islamic art, or the rules concerning poetic structure. This fascinating book describes geometric frameworks underlying this constraint-based creation. The author provides both a development in geometry and a description of how these frameworks fit the creative process within several art practices. He furthermore discusses the perceptual effects derived from the presence of particular geometric characteristics. The book began life as a liberal arts course and it is certainly suitable as a textbook. However, anyone interested in the power and ubiquity of mathematics will enjoy this revealing insight into the relationship between mathematics and the arts.
Publisher: Cambridge University Press
ISBN: 1107354498
Category : Mathematics
Languages : en
Pages : 427
Book Description
Most works of art, whether illustrative, musical or literary, are created subject to a set of constraints. In many (but not all) cases, these constraints have a mathematical nature, for example, the geometric transformations governing the canons of J. S. Bach, the various projection systems used in classical painting, the catalog of symmetries found in Islamic art, or the rules concerning poetic structure. This fascinating book describes geometric frameworks underlying this constraint-based creation. The author provides both a development in geometry and a description of how these frameworks fit the creative process within several art practices. He furthermore discusses the perceptual effects derived from the presence of particular geometric characteristics. The book began life as a liberal arts course and it is certainly suitable as a textbook. However, anyone interested in the power and ubiquity of mathematics will enjoy this revealing insight into the relationship between mathematics and the arts.
Groups and Symmetry: A Guide to Discovering Mathematics
Author: David W. Farmer
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Algebra and Trigonometry
Author: Jay P. Abramson
Publisher:
ISBN: 9781938168376
Category : Algebra
Languages : en
Pages : 1564
Book Description
"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.
Publisher:
ISBN: 9781938168376
Category : Algebra
Languages : en
Pages : 1564
Book Description
"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.