Author: Jiban Shrestha
Publisher: Universal-Publishers
ISBN: 1612334407
Category :
Languages : en
Pages : 133
Book Description
A field experiment was conducted at farmer’s field of Anandapur, Mangalpur VDC-3, Chitwan, Nepal during winter season from September 2006 to February 2007 to study the effects of nitrogen and plant population on maize. Fifteen treatment combinations consisting of five levels of nitrogen: 0, 50, 100, 150 and 200 kg N/ha and three levels of plant population; 55555 plants/ha (60 cm × 30 cm spacing), 66666 plants/ha (60 cm × 25 cm spacing) and 83333 plants/ha (60 cm × 20 cm spacing) were tested in factorial randomized complete block design (RCBD) with 3 replications. “Rampur Composite” variety of maize was planted on sandy silt loam and strongly acidic soil having medium in total nitrogen (0.123%), high in soil available phosphorous (77.56 kg/ha) and low in soil available potassium (23.25 kg/ha). The research findings revealed that each level of nitrogen significantly increased grain yield upto 200 kg N/ha. The grain yield (6514.48 kg/ha) obtained under 200 kg N/ha was significantly higher than that of 0, 50, 100 and 150 kg N/ha. The percent increment in yield due to application of 50, 100, 150 and 200 kg N/ha was to the extent of 62.11, 104.74, 135.68 and 154.74%, respectively over control. Significant effect on grain yield due to different levels of plant population was observed. The grain yield (5113.46 kg/ha) obtained under 66666 plants/ha was statistically at par with that under 83333 plants/ha, but significantly superior over that under 55555 plants/ha. The interaction between different nitrogen levels and plant densities on grain yield showed that the highest grain yield (6925.79 kg/ha) was obtained under treatment of 200 kg N/ha + 66666 plants/ha. The yield attributes namely number of cobs/plant, cob length, cob diameter, number of grain rows/cob and 1000 seed weight significantly increased with increasing N levels and decreasing plant population levels. The number of barren plants/ha decreased with increasing levels of N but increased with increasing levels of plant population. The net return (Rs. 42188.74/ha) and benefit:cost ratio (1.67) obtained under 200 kg N/ha were significantly highest than that obtained under other levels of nitrogen (150, 100, 50 and 0 kg N/ha). The plant population of 66666 plants/ha gave the highest net returns (Rs. 25812.28) which was 10.19 and 49.64% higher than that of 83333 plants/ha and 55555 plants/ha, respectively. The benefit: cost ratio (1.44) obtained under 66666 plants/ha was significantly higher than that of 55555 and 83333 plants/ha. The interaction between different nitrogen levels and plant densities on economics of maize production showed that significantly highest net return (Rs.48606.98) and B:C ratio (1.78) were under treatment of 200 kg N/ha + 66666 plants/ha. The highest grain yield and maximum profit were obtained when maize variety “Rampur Composite” was planted with 200 kg N/ha and plant population level of 66666 plants/ha (60 cm × 25 cm spacing).
Growth and Productivity of Winter Maize (Zea mays L.) Under Different Levels of Nitrogen and Plant Population
Author: Jiban Shrestha
Publisher: Universal-Publishers
ISBN: 1612334407
Category :
Languages : en
Pages : 133
Book Description
A field experiment was conducted at farmer’s field of Anandapur, Mangalpur VDC-3, Chitwan, Nepal during winter season from September 2006 to February 2007 to study the effects of nitrogen and plant population on maize. Fifteen treatment combinations consisting of five levels of nitrogen: 0, 50, 100, 150 and 200 kg N/ha and three levels of plant population; 55555 plants/ha (60 cm × 30 cm spacing), 66666 plants/ha (60 cm × 25 cm spacing) and 83333 plants/ha (60 cm × 20 cm spacing) were tested in factorial randomized complete block design (RCBD) with 3 replications. “Rampur Composite” variety of maize was planted on sandy silt loam and strongly acidic soil having medium in total nitrogen (0.123%), high in soil available phosphorous (77.56 kg/ha) and low in soil available potassium (23.25 kg/ha). The research findings revealed that each level of nitrogen significantly increased grain yield upto 200 kg N/ha. The grain yield (6514.48 kg/ha) obtained under 200 kg N/ha was significantly higher than that of 0, 50, 100 and 150 kg N/ha. The percent increment in yield due to application of 50, 100, 150 and 200 kg N/ha was to the extent of 62.11, 104.74, 135.68 and 154.74%, respectively over control. Significant effect on grain yield due to different levels of plant population was observed. The grain yield (5113.46 kg/ha) obtained under 66666 plants/ha was statistically at par with that under 83333 plants/ha, but significantly superior over that under 55555 plants/ha. The interaction between different nitrogen levels and plant densities on grain yield showed that the highest grain yield (6925.79 kg/ha) was obtained under treatment of 200 kg N/ha + 66666 plants/ha. The yield attributes namely number of cobs/plant, cob length, cob diameter, number of grain rows/cob and 1000 seed weight significantly increased with increasing N levels and decreasing plant population levels. The number of barren plants/ha decreased with increasing levels of N but increased with increasing levels of plant population. The net return (Rs. 42188.74/ha) and benefit:cost ratio (1.67) obtained under 200 kg N/ha were significantly highest than that obtained under other levels of nitrogen (150, 100, 50 and 0 kg N/ha). The plant population of 66666 plants/ha gave the highest net returns (Rs. 25812.28) which was 10.19 and 49.64% higher than that of 83333 plants/ha and 55555 plants/ha, respectively. The benefit: cost ratio (1.44) obtained under 66666 plants/ha was significantly higher than that of 55555 and 83333 plants/ha. The interaction between different nitrogen levels and plant densities on economics of maize production showed that significantly highest net return (Rs.48606.98) and B:C ratio (1.78) were under treatment of 200 kg N/ha + 66666 plants/ha. The highest grain yield and maximum profit were obtained when maize variety “Rampur Composite” was planted with 200 kg N/ha and plant population level of 66666 plants/ha (60 cm × 25 cm spacing).
Publisher: Universal-Publishers
ISBN: 1612334407
Category :
Languages : en
Pages : 133
Book Description
A field experiment was conducted at farmer’s field of Anandapur, Mangalpur VDC-3, Chitwan, Nepal during winter season from September 2006 to February 2007 to study the effects of nitrogen and plant population on maize. Fifteen treatment combinations consisting of five levels of nitrogen: 0, 50, 100, 150 and 200 kg N/ha and three levels of plant population; 55555 plants/ha (60 cm × 30 cm spacing), 66666 plants/ha (60 cm × 25 cm spacing) and 83333 plants/ha (60 cm × 20 cm spacing) were tested in factorial randomized complete block design (RCBD) with 3 replications. “Rampur Composite” variety of maize was planted on sandy silt loam and strongly acidic soil having medium in total nitrogen (0.123%), high in soil available phosphorous (77.56 kg/ha) and low in soil available potassium (23.25 kg/ha). The research findings revealed that each level of nitrogen significantly increased grain yield upto 200 kg N/ha. The grain yield (6514.48 kg/ha) obtained under 200 kg N/ha was significantly higher than that of 0, 50, 100 and 150 kg N/ha. The percent increment in yield due to application of 50, 100, 150 and 200 kg N/ha was to the extent of 62.11, 104.74, 135.68 and 154.74%, respectively over control. Significant effect on grain yield due to different levels of plant population was observed. The grain yield (5113.46 kg/ha) obtained under 66666 plants/ha was statistically at par with that under 83333 plants/ha, but significantly superior over that under 55555 plants/ha. The interaction between different nitrogen levels and plant densities on grain yield showed that the highest grain yield (6925.79 kg/ha) was obtained under treatment of 200 kg N/ha + 66666 plants/ha. The yield attributes namely number of cobs/plant, cob length, cob diameter, number of grain rows/cob and 1000 seed weight significantly increased with increasing N levels and decreasing plant population levels. The number of barren plants/ha decreased with increasing levels of N but increased with increasing levels of plant population. The net return (Rs. 42188.74/ha) and benefit:cost ratio (1.67) obtained under 200 kg N/ha were significantly highest than that obtained under other levels of nitrogen (150, 100, 50 and 0 kg N/ha). The plant population of 66666 plants/ha gave the highest net returns (Rs. 25812.28) which was 10.19 and 49.64% higher than that of 83333 plants/ha and 55555 plants/ha, respectively. The benefit: cost ratio (1.44) obtained under 66666 plants/ha was significantly higher than that of 55555 and 83333 plants/ha. The interaction between different nitrogen levels and plant densities on economics of maize production showed that significantly highest net return (Rs.48606.98) and B:C ratio (1.78) were under treatment of 200 kg N/ha + 66666 plants/ha. The highest grain yield and maximum profit were obtained when maize variety “Rampur Composite” was planted with 200 kg N/ha and plant population level of 66666 plants/ha (60 cm × 25 cm spacing).
Sustainable Agriculture Reviews
Author: Eric Lichtfouse
Publisher: Springer Science & Business Media
ISBN: 9400759614
Category : Science
Languages : en
Pages : 375
Book Description
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, philosophy and social sciences. Because actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.
Publisher: Springer Science & Business Media
ISBN: 9400759614
Category : Science
Languages : en
Pages : 375
Book Description
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, philosophy and social sciences. Because actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.
Maize Agroecosystem
Author: K. R. Krishna
Publisher: CRC Press
ISBN: 1466558695
Category : Science
Languages : en
Pages : 348
Book Description
Maize is among the most widely spread and widely used crops of the world, used for cereals for over 4 billion humans, as food for farm animals, and as a source material for biofuel production. Yet there are relatively few books on the cropping system of this important crop. This book, Maize Agroecosystem, is a concise treatise dealing with agronomy
Publisher: CRC Press
ISBN: 1466558695
Category : Science
Languages : en
Pages : 348
Book Description
Maize is among the most widely spread and widely used crops of the world, used for cereals for over 4 billion humans, as food for farm animals, and as a source material for biofuel production. Yet there are relatively few books on the cropping system of this important crop. This book, Maize Agroecosystem, is a concise treatise dealing with agronomy
Maize Crop
Author: A. Solaimalai
Publisher: CRC Press
ISBN: 1000176959
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
Maize is one of the versatile emerging crops with wider adaptability under varied agro-climatic conditions. Globally, maize is known as queen of cereals because it has the highest genetic yield potential among the cereals. It is cultivated on nearly 150 m/ha in about 160 countries having wider diversity of soil, climate, biodiversity and management practices that contributes 36 % (782 m/t) in the global grain production. The United States of America (USA) is the largest producer of maize contributes nearly 35 % of the total production in the world. It is the driver of the US economy. This book talks about the improvement, production, protection and post harvest technology of the maize crop. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Publisher: CRC Press
ISBN: 1000176959
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
Maize is one of the versatile emerging crops with wider adaptability under varied agro-climatic conditions. Globally, maize is known as queen of cereals because it has the highest genetic yield potential among the cereals. It is cultivated on nearly 150 m/ha in about 160 countries having wider diversity of soil, climate, biodiversity and management practices that contributes 36 % (782 m/t) in the global grain production. The United States of America (USA) is the largest producer of maize contributes nearly 35 % of the total production in the world. It is the driver of the US economy. This book talks about the improvement, production, protection and post harvest technology of the maize crop. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Plant Breeding Reviews
Author: Jules Janick
Publisher: John Wiley & Sons
ISBN: 9780470880562
Category : Science
Languages : en
Pages : 320
Book Description
Plant Breeding Reviews presents state-of-the-art reviews on plant breeding and genetics covering horticultural, agronomic and forestry crops, incorporating both traditional and molecular methods. The contributions are authored by world authorities, anonymously reviewed, and edited by Professor Jules Janick of Purdue University, USA. The series is an indispensible resource for crop breeders, plant scientists, and teachers involved in crop improvement and genetic resources.
Publisher: John Wiley & Sons
ISBN: 9780470880562
Category : Science
Languages : en
Pages : 320
Book Description
Plant Breeding Reviews presents state-of-the-art reviews on plant breeding and genetics covering horticultural, agronomic and forestry crops, incorporating both traditional and molecular methods. The contributions are authored by world authorities, anonymously reviewed, and edited by Professor Jules Janick of Purdue University, USA. The series is an indispensible resource for crop breeders, plant scientists, and teachers involved in crop improvement and genetic resources.
Plant Nutrition
Author: Walter Horst
Publisher: Springer Science & Business Media
ISBN: 030647624X
Category : Science
Languages : en
Pages : 1068
Book Description
This volume is a compilation of extended abstracts of all papers presented at the 14th International Plant Nutrition Colloquium. Over 500 oral and poster presentations illustrate current knowledge and research emphasis in this subject, providing a comprehensive view of the state of plant nutrition research.
Publisher: Springer Science & Business Media
ISBN: 030647624X
Category : Science
Languages : en
Pages : 1068
Book Description
This volume is a compilation of extended abstracts of all papers presented at the 14th International Plant Nutrition Colloquium. Over 500 oral and poster presentations illustrate current knowledge and research emphasis in this subject, providing a comprehensive view of the state of plant nutrition research.
Agronomic Crops
Author: Mirza Hasanuzzaman
Publisher: Springer Nature
ISBN: 9813291516
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
Agronomic crops have been used to provide foods, beverages, fodders, fuels, medicines and industrial raw materials since the dawn of human civilization. Today, agronomic crops are being cultivated by employing scientific methods instead of traditional methods. However, in the current era of climate change, agronomic crops are subjected to various environmental stresses, which results in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions. Scientists are now exploring a variety of approaches to the sustainable production of agronomic crops, including varietal development, soil management, nutrient and water management, pest management, etc. Researchers have also made remarkable progress in developing stress tolerance in crops through different approaches. However, achieving optimal production to meet the increasing food demand is an open challenge. Although there have been numerous publications on the above-mentioned problems, and despite the extensive research being conducted on them, there is hardly any comprehensive book available. In response, this book offers a timely resource, addressing all aspects of production technologies, management practices and stress tolerance in agronomic crops in a single volume.
Publisher: Springer Nature
ISBN: 9813291516
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
Agronomic crops have been used to provide foods, beverages, fodders, fuels, medicines and industrial raw materials since the dawn of human civilization. Today, agronomic crops are being cultivated by employing scientific methods instead of traditional methods. However, in the current era of climate change, agronomic crops are subjected to various environmental stresses, which results in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions. Scientists are now exploring a variety of approaches to the sustainable production of agronomic crops, including varietal development, soil management, nutrient and water management, pest management, etc. Researchers have also made remarkable progress in developing stress tolerance in crops through different approaches. However, achieving optimal production to meet the increasing food demand is an open challenge. Although there have been numerous publications on the above-mentioned problems, and despite the extensive research being conducted on them, there is hardly any comprehensive book available. In response, this book offers a timely resource, addressing all aspects of production technologies, management practices and stress tolerance in agronomic crops in a single volume.
Maize Forage Yield and Quality as Influenced by Hybrid Selection, Planting Date, and Plant Density
Author: Jeffrey Scott Graybill
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 310
Book Description
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 310
Book Description
Bibliography of Agriculture
Author:
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 1732
Book Description
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 1732
Book Description
Breeding for drought and nitrogen stress tolerance in maize: From theory to practice
Author: M. Bänzinger
Publisher: CIMMYT
ISBN: 9706480463
Category :
Languages : en
Pages : 69
Book Description
Introduction - why breed for drought and low N tolerance?; Conceptual framework - breeding; Conventional approaches to improving the drought and low N tolerance of maize; Conventional approaches challenged; The challenge of breeding for drought and low N tolerance; Maize under drought and low N stress; Conceptual framework - physiology; Water and the maize plant; Nitrogen and the maize plant; Maize under drought and low N stress - consequences for breeding; Stress management; Drought; Low N stress; Statistical designs and layout of experiments; Increasing the number of replicates; Improved statistical designs; Field layout; Border effects from alleys; Secondary traits; Why use secondary traits?; How do we decide on the value of secondary traits in a drought or low N breeding program?; Secondary traits that help to identify drought tolerance; Secondary traits that help to identify low N tolerance: Selection indices - Combining information on secondary traits with grain yield; Combining information from various experiments; Breeding strategies; Choice of germplasm; Breeding schemes; Biotechnology: potential and constraints for improving drought and low N tolerance; The role of the farmer in selection; What is farmer participatory research and why is it important?; What is new about farmer participatory research?; Participatory methodologies.
Publisher: CIMMYT
ISBN: 9706480463
Category :
Languages : en
Pages : 69
Book Description
Introduction - why breed for drought and low N tolerance?; Conceptual framework - breeding; Conventional approaches to improving the drought and low N tolerance of maize; Conventional approaches challenged; The challenge of breeding for drought and low N tolerance; Maize under drought and low N stress; Conceptual framework - physiology; Water and the maize plant; Nitrogen and the maize plant; Maize under drought and low N stress - consequences for breeding; Stress management; Drought; Low N stress; Statistical designs and layout of experiments; Increasing the number of replicates; Improved statistical designs; Field layout; Border effects from alleys; Secondary traits; Why use secondary traits?; How do we decide on the value of secondary traits in a drought or low N breeding program?; Secondary traits that help to identify drought tolerance; Secondary traits that help to identify low N tolerance: Selection indices - Combining information on secondary traits with grain yield; Combining information from various experiments; Breeding strategies; Choice of germplasm; Breeding schemes; Biotechnology: potential and constraints for improving drought and low N tolerance; The role of the farmer in selection; What is farmer participatory research and why is it important?; What is new about farmer participatory research?; Participatory methodologies.