Author: Robert C Bishop
Publisher: Morgan & Claypool Publishers
ISBN: 1643271563
Category : Science
Languages : en
Pages : 112
Book Description
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior. This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature. This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
The Physics of Emergence
Author: Robert C Bishop
Publisher: Morgan & Claypool Publishers
ISBN: 1643271563
Category : Science
Languages : en
Pages : 112
Book Description
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior. This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature. This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
Publisher: Morgan & Claypool Publishers
ISBN: 1643271563
Category : Science
Languages : en
Pages : 112
Book Description
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior. This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature. This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
Physics Of Emergence And Organization
Author: Ignazio Licata
Publisher: World Scientific
ISBN: 9814472158
Category : Science
Languages : en
Pages : 432
Book Description
This book is a state-of-the-art review on the Physics of Emergence. The challenge of complexity is to focus on the description levels of the observer in context-dependent situations. Emergence is not only an heuristic approach to complexity, but it also urges us to face a much deeper question — what do we think is fundamental in the physical world?This volume provides significant and pioneering contributions based on rigorous physical and mathematical approaches — with particular reference to the syntax of Quantum Physics and Quantum Field Theory — dealing with the bridge-laws and their limitations between Physics and Biology, without failing to discuss the involved epistemological features.Physics of Emergence and Organization is an interdisciplinary source of reference for students and experts whose interests cross over to complexity issues.
Publisher: World Scientific
ISBN: 9814472158
Category : Science
Languages : en
Pages : 432
Book Description
This book is a state-of-the-art review on the Physics of Emergence. The challenge of complexity is to focus on the description levels of the observer in context-dependent situations. Emergence is not only an heuristic approach to complexity, but it also urges us to face a much deeper question — what do we think is fundamental in the physical world?This volume provides significant and pioneering contributions based on rigorous physical and mathematical approaches — with particular reference to the syntax of Quantum Physics and Quantum Field Theory — dealing with the bridge-laws and their limitations between Physics and Biology, without failing to discuss the involved epistemological features.Physics of Emergence and Organization is an interdisciplinary source of reference for students and experts whose interests cross over to complexity issues.
On the Emergence Theme of Physics
Author: Robert Carroll
Publisher: World Scientific
ISBN: 9814291803
Category : Mathematics
Languages : en
Pages : 288
Book Description
The book surveys mathematical relations between classical and quantum mechanics, gravity, time and thermodynamics from various points of view and many sources (with appropriate attribution). The emergence theme is developed with an emphasis on the meaning via mathematics. A background theme of Bohemian mechanics and connections to the quantum equivalence principle of Matone et al. is also developed in great detail. Some original work relating the quantum potential and Ricci flow is also included.
Publisher: World Scientific
ISBN: 9814291803
Category : Mathematics
Languages : en
Pages : 288
Book Description
The book surveys mathematical relations between classical and quantum mechanics, gravity, time and thermodynamics from various points of view and many sources (with appropriate attribution). The emergence theme is developed with an emphasis on the meaning via mathematics. A background theme of Bohemian mechanics and connections to the quantum equivalence principle of Matone et al. is also developed in great detail. Some original work relating the quantum potential and Ricci flow is also included.
The Biggest Ideas in the Universe
Author: Sean Carroll
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
A World Beyond Physics
Author: Stuart A. Kauffman
Publisher: Oxford University Press
ISBN: 0190871342
Category : Science
Languages : en
Pages : 169
Book Description
How did life start? Is the evolution of life describable by any physics-like laws? Stuart Kauffman's latest book offers an explanation-beyond what the laws of physics can explain-of the progression from a complex chemical environment to molecular reproduction, metabolism and to early protocells, and further evolution to what we recognize as life. Among the estimated one hundred billion solar systems in the known universe, evolving life is surely abundant. That evolution is a process of "becoming" in each case. Since Newton, we have turned to physics to assess reality. But physics alone cannot tell us where we came from, how we arrived, and why our world has evolved past the point of unicellular organisms to an extremely complex biosphere. Building on concepts from his work as a complex systems researcher at the Santa Fe Institute, Kauffman focuses in particular on the idea of cells constructing themselves and introduces concepts such as "constraint closure." Living systems are defined by the concept of "organization" which has not been focused on in enough in previous works. Cells are autopoetic systems that build themselves: they literally construct their own constraints on the release of energy into a few degrees of freedom that constitutes the very thermodynamic work by which they build their own self creating constraints. Living cells are "machines" that construct and assemble their own working parts. The emergence of such systems-the origin of life problem-was probably a spontaneous phase transition to self-reproduction in complex enough prebiotic systems. The resulting protocells were capable of Darwin's heritable variation, hence open-ended evolution by natural selection. Evolution propagates this burgeoning organization. Evolving living creatures, by existing, create new niches into which yet further new creatures can emerge. If life is abundant in the universe, this self-constructing, propagating, exploding diversity takes us beyond physics to biospheres everywhere.
Publisher: Oxford University Press
ISBN: 0190871342
Category : Science
Languages : en
Pages : 169
Book Description
How did life start? Is the evolution of life describable by any physics-like laws? Stuart Kauffman's latest book offers an explanation-beyond what the laws of physics can explain-of the progression from a complex chemical environment to molecular reproduction, metabolism and to early protocells, and further evolution to what we recognize as life. Among the estimated one hundred billion solar systems in the known universe, evolving life is surely abundant. That evolution is a process of "becoming" in each case. Since Newton, we have turned to physics to assess reality. But physics alone cannot tell us where we came from, how we arrived, and why our world has evolved past the point of unicellular organisms to an extremely complex biosphere. Building on concepts from his work as a complex systems researcher at the Santa Fe Institute, Kauffman focuses in particular on the idea of cells constructing themselves and introduces concepts such as "constraint closure." Living systems are defined by the concept of "organization" which has not been focused on in enough in previous works. Cells are autopoetic systems that build themselves: they literally construct their own constraints on the release of energy into a few degrees of freedom that constitutes the very thermodynamic work by which they build their own self creating constraints. Living cells are "machines" that construct and assemble their own working parts. The emergence of such systems-the origin of life problem-was probably a spontaneous phase transition to self-reproduction in complex enough prebiotic systems. The resulting protocells were capable of Darwin's heritable variation, hence open-ended evolution by natural selection. Evolution propagates this burgeoning organization. Evolving living creatures, by existing, create new niches into which yet further new creatures can emerge. If life is abundant in the universe, this self-constructing, propagating, exploding diversity takes us beyond physics to biospheres everywhere.
Metaphysical Emergence
Author: Jessica M. Wilson
Publisher: Oxford University Press
ISBN: 0192556975
Category : Philosophy
Languages : en
Pages : 337
Book Description
Both the special sciences and ordinary experience suggest that there are metaphysically emergent entities and features: macroscopic goings-on (including mountains, trees, humans, and sculptures, and their characteristic properties) which depend on, yet are distinct from and distinctively efficacious with respect to, lower-level physical configurations and features. These appearances give rise to two key questions. First, what is metaphysical emergence, more precisely? Second, is there any metaphysical emergence, in principle and moreover in fact? Metaphysical Emergence provides clear and systematic answers to these questions. Wilson argues that there are two, and only two, forms of metaphysical emergence of the sort seemingly at issue in the target cases: 'Weak' emergence, whereby a dependent feature has a proper subset of the powers of the feature upon which it depends, and 'Strong' emergence, whereby a dependent feature has a power not had by the feature upon which it depends. Weak emergence unifies and illuminates seemingly diverse accounts of non-reductive physicalism; Strong emergence does the same as regards seemingly diverse anti-physicalist views positing fundamental novelty at higher levels of compositional complexity. After defending the in-principle viability of each form of emergence, Wilson considers whether complex systems, ordinary objects, consciousness, and free will are actually metaphysically emergent. She argues that Weak emergence is quite common, and that there is Strong emergence in the important case of free will.
Publisher: Oxford University Press
ISBN: 0192556975
Category : Philosophy
Languages : en
Pages : 337
Book Description
Both the special sciences and ordinary experience suggest that there are metaphysically emergent entities and features: macroscopic goings-on (including mountains, trees, humans, and sculptures, and their characteristic properties) which depend on, yet are distinct from and distinctively efficacious with respect to, lower-level physical configurations and features. These appearances give rise to two key questions. First, what is metaphysical emergence, more precisely? Second, is there any metaphysical emergence, in principle and moreover in fact? Metaphysical Emergence provides clear and systematic answers to these questions. Wilson argues that there are two, and only two, forms of metaphysical emergence of the sort seemingly at issue in the target cases: 'Weak' emergence, whereby a dependent feature has a proper subset of the powers of the feature upon which it depends, and 'Strong' emergence, whereby a dependent feature has a power not had by the feature upon which it depends. Weak emergence unifies and illuminates seemingly diverse accounts of non-reductive physicalism; Strong emergence does the same as regards seemingly diverse anti-physicalist views positing fundamental novelty at higher levels of compositional complexity. After defending the in-principle viability of each form of emergence, Wilson considers whether complex systems, ordinary objects, consciousness, and free will are actually metaphysically emergent. She argues that Weak emergence is quite common, and that there is Strong emergence in the important case of free will.
The Routledge Handbook of Emergence
Author: Sophie Gibb
Publisher: Routledge
ISBN: 1317381505
Category : Philosophy
Languages : en
Pages : 435
Book Description
Emergence is often described as the idea that the whole is greater than the sum of the parts: interactions among the components of a system lead to distinctive novel properties. It has been invoked to describe the flocking of birds, the phases of matter and human consciousness, along with many other phenomena. Since the nineteenth century, the notion of emergence has been widely applied in philosophy, particularly in contemporary philosophy of mind, philosophy of science and metaphysics. It has more recently become central to scientists’ understanding of phenomena across physics, chemistry, complexity and systems theory, biology and the social sciences. The Routledge Handbook of Emergence is an outstanding reference source and exploration of the concept of emergence, and is the first collection of its kind. Thirty-two chapters by an international team of contributors are organised into four parts: Foundations of emergence Emergence and mind Emergence and physics Emergence and the special sciences Within these sections important topics and problems in emergence are explained, including the British Emergentists; weak vs. strong emergence; emergence and downward causation; dependence, complexity and mechanisms; mental causation, consciousness and dualism; quantum mechanics, soft matter and chemistry; and evolution, cognitive science and social sciences. Essential reading for students and researchers in philosophy of mind, philosophy of science and metaphysics, The Routledge Handbook of Emergence will also be of interest to those studying foundational issues in biology, chemistry, physics and psychology.
Publisher: Routledge
ISBN: 1317381505
Category : Philosophy
Languages : en
Pages : 435
Book Description
Emergence is often described as the idea that the whole is greater than the sum of the parts: interactions among the components of a system lead to distinctive novel properties. It has been invoked to describe the flocking of birds, the phases of matter and human consciousness, along with many other phenomena. Since the nineteenth century, the notion of emergence has been widely applied in philosophy, particularly in contemporary philosophy of mind, philosophy of science and metaphysics. It has more recently become central to scientists’ understanding of phenomena across physics, chemistry, complexity and systems theory, biology and the social sciences. The Routledge Handbook of Emergence is an outstanding reference source and exploration of the concept of emergence, and is the first collection of its kind. Thirty-two chapters by an international team of contributors are organised into four parts: Foundations of emergence Emergence and mind Emergence and physics Emergence and the special sciences Within these sections important topics and problems in emergence are explained, including the British Emergentists; weak vs. strong emergence; emergence and downward causation; dependence, complexity and mechanisms; mental causation, consciousness and dualism; quantum mechanics, soft matter and chemistry; and evolution, cognitive science and social sciences. Essential reading for students and researchers in philosophy of mind, philosophy of science and metaphysics, The Routledge Handbook of Emergence will also be of interest to those studying foundational issues in biology, chemistry, physics and psychology.
The Emergence of Spacetime in String Theory
Author: Tiziana Vistarini
Publisher: Routledge
ISBN: 1134842406
Category : Philosophy
Languages : en
Pages : 241
Book Description
The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory—called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.
Publisher: Routledge
ISBN: 1134842406
Category : Philosophy
Languages : en
Pages : 241
Book Description
The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory—called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.
Emergence in Science and Philosophy
Author: Antonella Corradini
Publisher: Routledge
ISBN: 1136955127
Category : Philosophy
Languages : en
Pages : 329
Book Description
The concept of emergence has seen a significant resurgence in philosophy and the sciences, yet debates regarding emergentist and reductionist visions of the natural world continue to be hampered by imprecision or ambiguity. Emergent phenomena are said to arise out of and be sustained by more basic phenomena, while at the same time exerting a "top-down" control upon those very sustaining processes. To some critics, this has the air of magic, as it seems to suggest a kind of circular causality. Other critics deem the concept of emergence to be objectionably anti-naturalistic. Objections such as these have led many thinkers to construe emergent phenomena instead as coarse-grained patterns in the world that, while calling for distinctive concepts, do not "disrupt" the ordinary dynamics of the finer-grained (more fundamental) levels. Yet, reconciling emergence with a (presumed) pervasive causal continuity at the fundamental level can seem to deflate emergence of its initially profound significance. This basic problematic is mirrored by similar controversy over how best to characterize the opposite systematizing impulse, most commonly given an equally evocative but vague term, "reductionism." The original essays in this volume help to clarify the alternatives: inadequacies in some older formulations and arguments are exposed and new lines of argument on behalf the two visions are advanced.
Publisher: Routledge
ISBN: 1136955127
Category : Philosophy
Languages : en
Pages : 329
Book Description
The concept of emergence has seen a significant resurgence in philosophy and the sciences, yet debates regarding emergentist and reductionist visions of the natural world continue to be hampered by imprecision or ambiguity. Emergent phenomena are said to arise out of and be sustained by more basic phenomena, while at the same time exerting a "top-down" control upon those very sustaining processes. To some critics, this has the air of magic, as it seems to suggest a kind of circular causality. Other critics deem the concept of emergence to be objectionably anti-naturalistic. Objections such as these have led many thinkers to construe emergent phenomena instead as coarse-grained patterns in the world that, while calling for distinctive concepts, do not "disrupt" the ordinary dynamics of the finer-grained (more fundamental) levels. Yet, reconciling emergence with a (presumed) pervasive causal continuity at the fundamental level can seem to deflate emergence of its initially profound significance. This basic problematic is mirrored by similar controversy over how best to characterize the opposite systematizing impulse, most commonly given an equally evocative but vague term, "reductionism." The original essays in this volume help to clarify the alternatives: inadequacies in some older formulations and arguments are exposed and new lines of argument on behalf the two visions are advanced.
There Is No Theory of Everything
Author: Lars Q. English
Publisher: Springer
ISBN: 3319591509
Category : Science
Languages : en
Pages : 231
Book Description
The main purpose of this book is to introduce a broader audience to emergence by illustrating how discoveries in the physical sciences have informed the ways we think about it. In a nutshell, emergence asserts that non-reductive behavior arises at higher levels of organization and complexity. As physicist Philip Anderson put it, “more is different.” Along the text's conversational tour through the terrain of quantum physics, phase transitions, nonlinear and statistical physics, networks and complexity, the author highlights the various philosophical nuances that arise in encounters with emergence. The final part of the book zooms out to reflect on some larger lessons that emergence affords us. One of those larger lessons is the realization that the great diversity of theories and models, and the great variety of independent explanatory frameworks, will always be with us in the sciences and beyond. There is no “Theory of Everything” just around the corner waiting to be discovered. One of the main benefits of this book is that it will make a number of exciting scientific concepts that are not normally covered at this level accessible to a broader audience. The overall presentation, including the use of examples, analogies, metaphors, and biographical interludes, is geared for the educated non-specialist.
Publisher: Springer
ISBN: 3319591509
Category : Science
Languages : en
Pages : 231
Book Description
The main purpose of this book is to introduce a broader audience to emergence by illustrating how discoveries in the physical sciences have informed the ways we think about it. In a nutshell, emergence asserts that non-reductive behavior arises at higher levels of organization and complexity. As physicist Philip Anderson put it, “more is different.” Along the text's conversational tour through the terrain of quantum physics, phase transitions, nonlinear and statistical physics, networks and complexity, the author highlights the various philosophical nuances that arise in encounters with emergence. The final part of the book zooms out to reflect on some larger lessons that emergence affords us. One of those larger lessons is the realization that the great diversity of theories and models, and the great variety of independent explanatory frameworks, will always be with us in the sciences and beyond. There is no “Theory of Everything” just around the corner waiting to be discovered. One of the main benefits of this book is that it will make a number of exciting scientific concepts that are not normally covered at this level accessible to a broader audience. The overall presentation, including the use of examples, analogies, metaphors, and biographical interludes, is geared for the educated non-specialist.