The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
The goal of this Department of Energy sponsored research is to discover the properties, behavior, and dissociation dynamics of vibrationally energized molecules, which are crucial participants in many chemical reactions. The authors study vibrationally energized molecules by using an optical excitation scheme to prepare them and a subsequent photon to dissociate them into fragments that they detect with a spectroscopic probe. This technique, vibrationally mediated photodissociation, provides new information on vibrationally energized molecules and even provides a means of controlling the course of a molecular decomposition. During the most recent period of Department of Energy support, the authors have advanced this work in three directions: they have used vibrational overtone excitation to control the decomposition pathways in the tetra-atomic molecule isocyanic acid (HNCO) and unravelled the decomposition pathways in hydroxylamine (NH2OH), they have implemented stimulated Raman excitation as the vibrational state preparation technique in vibrationally mediated photodissociation, and they have tested the limits of transient grating spectroscopy as a means of obtaining electronic spectra of vibrationally excited molecules.

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
The goal of this Department of Energy sponsored research is to discover the properties, behavior, and dissociation dynamics of vibrationally energized molecules, which are crucial participants in many chemical reactions. The authors study vibrationally energized molecules by using an optical excitation scheme to prepare them and a subsequent photon to dissociate them into fragments that they detect with a spectroscopic probe. This technique, vibrationally mediated photodissociation, provides new information on vibrationally energized molecules and even provides a means of controlling the course of a molecular decomposition. During the most recent period of Department of Energy support, the authors have advanced this work in three directions: they have used vibrational overtone excitation to control the decomposition pathways in the tetra-atomic molecule isocyanic acid (HNCO) and unravelled the decomposition pathways in hydroxylamine (NH2OH), they have implemented stimulated Raman excitation as the vibrational state preparation technique in vibrationally mediated photodissociation, and they have tested the limits of transient grating spectroscopy as a means of obtaining electronic spectra of vibrationally excited molecules.

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
We have used combined vibrational overtone excitation and laser induced fluorescence detection to study dissociation dynamics of hydroxylamine (NH[sub 2]OH), have performed our first laser induced grating experiments on water, and have begun assembling a new apparatus for preparing vibrationally excited molecules with simulated Raman excitation. We study role of vibrational excitation in photodissociation dynamics by using a vibrational state preparation technique, such as vibrational overtone excitation or stimulated Raman excitation, to create molecules with particular nuclear motions and then to excite that molecule to a dissociative electronic state.

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report, 1993--1994

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report, 1993--1994 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Combined vibrational overtone excitation and laser induced fluorescence detection was used to study dissociation dynamics of hydroxylamine (NH2OH), laser induced grating experiments on water were analyzed, discovering the important role that electrostriction and thermal relaxation play, and a new apparatus for preparing vibrationally excited molecules with simulated Raman excitation was completed and the first measurements made. Role of vibrational excitation in photodissociation dynamics was studied using a vibrational state preparation technique, such as vibrational overtone excitation or stimulated Raman excitation, to create molecules with particular nuclear motions and then excite that molecule to a dissociative electronic state. Because the vibrational excitation alters the dissociation dynamics in the excited state, both by providing access to different portions of the excited state surface and by altering the motion of the system on the surface, it is usually refered to as vibrationally mediated photodissociation.

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report, 1992--1993

The Photodissociation and Reaction Dynamics of Vibrationally Excited Molecules. Technical Progress Report, 1992--1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
We have used combined vibrational overtone excitation and laser induced fluorescence detection to study dissociation dynamics of hydroxylamine (NH2OH), have performed our first laser induced grating experiments on water, and have begun assembling a new apparatus for preparing vibrationally excited molecules with simulated Raman excitation. We study role of vibrational excitation in photodissociation dynamics by using a vibrational state preparation technique, such as vibrational overtone excitation or stimulated Raman excitation, to create molecules with particular nuclear motions and then to excite that molecule to a dissociative electronic state.

Spectroscopy, Reaction, and Photodissociation in Highly Vibrationally Excited Molecules

Spectroscopy, Reaction, and Photodissociation in Highly Vibrationally Excited Molecules PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description
Highly vibrationally excited molecules often control the course of chemical reactions in the atmosphere, combustion, plasmas, and many other environments. The research described in this Progress Report uses laser excitation and interrogation techniques to study and control the dynamics of highly vibrationally excited molecules. In particular, they show that it is possible to unravel the details and influence the course of photodissociation and bimolecular reaction. The experiments use laser excitation of overtone vibrations to prepare highly vibrationally excited molecules, frequently with single quantum state resolution, and laser spectroscopy to monitor the subsequent behavior of the excited molecule. We have studied the vibrationally mediated photodissociation and the bond- and state-selected bimolecular reaction of highly vibrationally excited molecules. In the first process, one photon creates a highly excited molecule, a second photon from another laser dissociates it, and light from a third laser detects the population of individual product quantum states. This approach allows us to explore otherwise inaccessible regions of the ground and excited state potential energy surface and, by exciting to the proper regions of the surface, to control the breaking of a selected chemical bond. In the second process, the highly vibrationally excited molecule reacts with an atom formed either in a microwave discharge or by photolysis and another laser interrogates the products. We have used this approach to demonstrate mode- and bond-selected bimolecular reactions in which the initial excitation controls the subsequent chemistry. 30 refs., 8 figs.

Spectroscopy, Reaction, and Photodissociation in Highly Vibrationally Excited Molecules. Technical Progress Report

Spectroscopy, Reaction, and Photodissociation in Highly Vibrationally Excited Molecules. Technical Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description
Highly vibrationally excited molecules often control the course of chemical reactions in the atmosphere, combustion, plasmas, and many other environments. The research described in this Progress Report uses laser excitation and interrogation techniques to study and control the dynamics of highly vibrationally excited molecules. In particular, they show that it is possible to unravel the details and influence the course of photodissociation and bimolecular reaction. The experiments use laser excitation of overtone vibrations to prepare highly vibrationally excited molecules, frequently with single quantum state resolution, and laser spectroscopy to monitor the subsequent behavior of the excited molecule. We have studied the vibrationally mediated photodissociation and the bond- and state-selected bimolecular reaction of highly vibrationally excited molecules. In the first process, one photon creates a highly excited molecule, a second photon from another laser dissociates it, and light from a third laser detects the population of individual product quantum states. This approach allows us to explore otherwise inaccessible regions of the ground and excited state potential energy surface and, by exciting to the proper regions of the surface, to control the breaking of a selected chemical bond. In the second process, the highly vibrationally excited molecule reacts with an atom formed either in a microwave discharge or by photolysis and another laser interrogates the products. We have used this approach to demonstrate mode- and bond-selected bimolecular reactions in which the initial excitation controls the subsequent chemistry. 30 refs., 8 figs.

The Dynamics of Vibrationally Excited Molecules

The Dynamics of Vibrationally Excited Molecules PDF Author: C. B. Moore
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
This work studies the transfer of vibrational energy among molecular degrees of freedom and the chemical reactions of vibrationally excited molecules. By resolving the dependence of energy transfer and reaction processes on quantum numbers the mechanism of and forces involved in these processes are identified. Keywords: Photofragment spectroscopy; Vibrational energy transfer; Matrix isolation; Photodissociation; Vibrational photochemistry.

Vibrational Dynamics Of Molecules

Vibrational Dynamics Of Molecules PDF Author: Joel M Bowman
Publisher: World Scientific
ISBN: 9811237921
Category : Science
Languages : en
Pages : 603

Get Book Here

Book Description
Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.

Advances in Chemical Reaction Dynamics

Advances in Chemical Reaction Dynamics PDF Author: Peter M. Rentzepis
Publisher: Springer Science & Business Media
ISBN: 9400947348
Category : Science
Languages : en
Pages : 608

Get Book Here

Book Description
This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidation of reaction dynamics and structural changes occurring during the course of ultrafast chemical reactions; propagation of turbulent flames and detonations in gaseousĀ· energetic systems are also discussed in some detail. In addition a large portion of the program was devoted to current experimental and theoretical studies of the structure of the transition state as inferred from product state distributions; translational energy release in the photodissociation of aromatic molecules; intramolecu lar and intraionic dynamic processes.

Molecular Reaction Dynamics

Molecular Reaction Dynamics PDF Author: Raphael D. Levine
Publisher: Cambridge University Press
ISBN: 9781139442879
Category : Technology & Engineering
Languages : en
Pages : 574

Get Book Here

Book Description
Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.