Author: Fran Burgess
Publisher: Crown House Publishing
ISBN: 1845908422
Category : Self-Help
Languages : en
Pages : 321
Book Description
The NLP Cookbook is a veritable smorgasbord of NLP and related techniques gleaned from some of the greatest names in the field and adapted to provide an encyclopaedic resource for all therapists, coaches, change agents or health professionals.Fran Burgess uses the metaphor of cooking to describe the process of bringing together the best ingredients in NLP and selecting them carefully in order to produce some mouth watering results. The recipes are grouped into sections depending on their purpose. Quite a few focus on how to shift state, with some of these targeting specific states like acceptance and anxiety. These are followed by recipes that seek to develop behaviours and skills, and others that address beliefs and identity. There is then a wide range to choose from which deal with goals, relationships and the process of change.The beauty is that most of them can be used time and again for different circumstances and contexts, so they never wear out. Each recipe is prefaced by an introduction, giving you some background to its source and evolution. You are provided with its ingredients, should you be interested in its engineering, plus timings and materials required, and if it is suitable for working solo, or with a partner. Novice cooks can follow the recipes slavishly whereas those with more experience can adapt a recipe, adding a little something here, removing a little something there. This is not magic. They understand the chemistry that underpins the cooking process. They know what happens when you put this with that, now or later.
The NLP Cookbook
Author: Fran Burgess
Publisher: Crown House Publishing
ISBN: 1845908422
Category : Self-Help
Languages : en
Pages : 321
Book Description
The NLP Cookbook is a veritable smorgasbord of NLP and related techniques gleaned from some of the greatest names in the field and adapted to provide an encyclopaedic resource for all therapists, coaches, change agents or health professionals.Fran Burgess uses the metaphor of cooking to describe the process of bringing together the best ingredients in NLP and selecting them carefully in order to produce some mouth watering results. The recipes are grouped into sections depending on their purpose. Quite a few focus on how to shift state, with some of these targeting specific states like acceptance and anxiety. These are followed by recipes that seek to develop behaviours and skills, and others that address beliefs and identity. There is then a wide range to choose from which deal with goals, relationships and the process of change.The beauty is that most of them can be used time and again for different circumstances and contexts, so they never wear out. Each recipe is prefaced by an introduction, giving you some background to its source and evolution. You are provided with its ingredients, should you be interested in its engineering, plus timings and materials required, and if it is suitable for working solo, or with a partner. Novice cooks can follow the recipes slavishly whereas those with more experience can adapt a recipe, adding a little something here, removing a little something there. This is not magic. They understand the chemistry that underpins the cooking process. They know what happens when you put this with that, now or later.
Publisher: Crown House Publishing
ISBN: 1845908422
Category : Self-Help
Languages : en
Pages : 321
Book Description
The NLP Cookbook is a veritable smorgasbord of NLP and related techniques gleaned from some of the greatest names in the field and adapted to provide an encyclopaedic resource for all therapists, coaches, change agents or health professionals.Fran Burgess uses the metaphor of cooking to describe the process of bringing together the best ingredients in NLP and selecting them carefully in order to produce some mouth watering results. The recipes are grouped into sections depending on their purpose. Quite a few focus on how to shift state, with some of these targeting specific states like acceptance and anxiety. These are followed by recipes that seek to develop behaviours and skills, and others that address beliefs and identity. There is then a wide range to choose from which deal with goals, relationships and the process of change.The beauty is that most of them can be used time and again for different circumstances and contexts, so they never wear out. Each recipe is prefaced by an introduction, giving you some background to its source and evolution. You are provided with its ingredients, should you be interested in its engineering, plus timings and materials required, and if it is suitable for working solo, or with a partner. Novice cooks can follow the recipes slavishly whereas those with more experience can adapt a recipe, adding a little something here, removing a little something there. This is not magic. They understand the chemistry that underpins the cooking process. They know what happens when you put this with that, now or later.
Python Natural Language Processing Cookbook
Author: Zhenya Antić
Publisher: Packt Publishing Ltd
ISBN: 1838987789
Category : Computers
Languages : en
Pages : 285
Book Description
Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
Publisher: Packt Publishing Ltd
ISBN: 1838987789
Category : Computers
Languages : en
Pages : 285
Book Description
Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
Natural Language Processing with Python Cookbook
Author: Krishna Bhavsar
Publisher:
ISBN: 9781787289321
Category : Computers
Languages : en
Pages : 316
Book Description
Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.
Publisher:
ISBN: 9781787289321
Category : Computers
Languages : en
Pages : 316
Book Description
Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.
Practical Natural Language Processing
Author: Sowmya Vajjala
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455
Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Publisher: O'Reilly Media
ISBN: 149205402X
Category : Computers
Languages : en
Pages : 455
Book Description
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Natural Language Processing with Java Cookbook
Author: Richard M. Reese
Publisher: Packt Publishing Ltd
ISBN: 1789808839
Category : Computers
Languages : en
Pages : 374
Book Description
A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key FeaturesPerform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operationsBook Description Natural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon’s AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learnExplore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languagesWho this book is for This book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.
Publisher: Packt Publishing Ltd
ISBN: 1789808839
Category : Computers
Languages : en
Pages : 374
Book Description
A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key FeaturesPerform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operationsBook Description Natural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon’s AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learnExplore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languagesWho this book is for This book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.
Natural Language Processing with Python
Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Natural Language Processing Recipes
Author: Akshay Kulkarni
Publisher: Apress
ISBN: 148424267X
Category : Computers
Languages : en
Pages : 253
Book Description
Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will LearnApply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.
Publisher: Apress
ISBN: 148424267X
Category : Computers
Languages : en
Pages : 253
Book Description
Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will LearnApply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.
Natural Language Processing with Java and LingPipe Cookbook
Author: Breck Baldwin
Publisher: Packt Publishing Ltd
ISBN: 1783284684
Category : Computers
Languages : en
Pages : 485
Book Description
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.
Publisher: Packt Publishing Ltd
ISBN: 1783284684
Category : Computers
Languages : en
Pages : 485
Book Description
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.
Hands-On Natural Language Processing with Python
Author: Rajesh Arumugam
Publisher: Packt Publishing Ltd
ISBN: 1789135915
Category : Computers
Languages : en
Pages : 307
Book Description
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Publisher: Packt Publishing Ltd
ISBN: 1789135915
Category : Computers
Languages : en
Pages : 307
Book Description
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Java Deep Learning Cookbook
Author: Rahul Raj
Publisher: Packt Publishing Ltd
ISBN: 1788999479
Category : Computers
Languages : en
Pages : 294
Book Description
Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook Description Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learnPerform data normalization and wrangling using DL4JBuild deep neural networks using DL4JImplement CNNs to solve image classification problemsTrain autoencoders to solve anomaly detection problems using DL4JPerform benchmarking and optimization to improve your model's performanceImplement reinforcement learning for real-world use cases using RL4JLeverage the capabilities of DL4J in distributed systemsWho this book is for If you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1788999479
Category : Computers
Languages : en
Pages : 294
Book Description
Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook Description Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learnPerform data normalization and wrangling using DL4JBuild deep neural networks using DL4JImplement CNNs to solve image classification problemsTrain autoencoders to solve anomaly detection problems using DL4JPerform benchmarking and optimization to improve your model's performanceImplement reinforcement learning for real-world use cases using RL4JLeverage the capabilities of DL4J in distributed systemsWho this book is for If you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book.