Author: Jean-Daniel Horisberger
Publisher: R. G. Landes
ISBN:
Category : Medical
Languages : en
Pages : 148
Book Description
This text addresses the question, How does the sodium pump pump'. A variety of primary structure information is available, and progress has been made in the functional characterization of the Na, K-pump, making the answer to this question possible, within reach of currently used techniques
The Na, K-ATPase
Author: Jean-Daniel Horisberger
Publisher: R. G. Landes
ISBN:
Category : Medical
Languages : en
Pages : 148
Book Description
This text addresses the question, How does the sodium pump pump'. A variety of primary structure information is available, and progress has been made in the functional characterization of the Na, K-pump, making the answer to this question possible, within reach of currently used techniques
Publisher: R. G. Landes
ISBN:
Category : Medical
Languages : en
Pages : 148
Book Description
This text addresses the question, How does the sodium pump pump'. A variety of primary structure information is available, and progress has been made in the functional characterization of the Na, K-pump, making the answer to this question possible, within reach of currently used techniques
The Sodium Pump
Author: Ernst Bamberg
Publisher: Springer Science & Business Media
ISBN: 3642725112
Category : Medical
Languages : en
Pages : 924
Book Description
The sodium of animal cell membranes converts the chemical energy obtained from the hydrolysis of adenosine 5' -triphosphate into a movement of the cations Na + and K + against an electrochemical gradient. The gradient is used subse quently as an energy source to drive the uptake of metabolic substrates in polar epithelial cells and to use it for purposes of communications in excitable cells. The biological importance of the sodium pump is evident from the fact that be tween 20-70% of the cell's metabolic energy is consumed for the pumping pro cess. Moreover, the sodium pump is an important biological system involved in regulatory processes like the maintenance of the cells' and organism's water me tabolism. It is therefore understandable that special cellular demands are han dled better by special isoforms of the sodium pump, that the expression of the sodium pump and their isoforms is regulated by hormones as is the activity of the sodium pump via hormone-regulated protein kinases. Additionally, the sodium pump itself seems to be a receptor for a putative new group of hormones, the endogenous digitalis-like substances, which still have to be defined in most cases in their structure. This group of substances has its chemically well known coun terpart in steroids from plant and toad origin which are generally known as "car diac glycosides". They are in medical use since at least 200 years in medicine in the treatment of heart diseases.
Publisher: Springer Science & Business Media
ISBN: 3642725112
Category : Medical
Languages : en
Pages : 924
Book Description
The sodium of animal cell membranes converts the chemical energy obtained from the hydrolysis of adenosine 5' -triphosphate into a movement of the cations Na + and K + against an electrochemical gradient. The gradient is used subse quently as an energy source to drive the uptake of metabolic substrates in polar epithelial cells and to use it for purposes of communications in excitable cells. The biological importance of the sodium pump is evident from the fact that be tween 20-70% of the cell's metabolic energy is consumed for the pumping pro cess. Moreover, the sodium pump is an important biological system involved in regulatory processes like the maintenance of the cells' and organism's water me tabolism. It is therefore understandable that special cellular demands are han dled better by special isoforms of the sodium pump, that the expression of the sodium pump and their isoforms is regulated by hormones as is the activity of the sodium pump via hormone-regulated protein kinases. Additionally, the sodium pump itself seems to be a receptor for a putative new group of hormones, the endogenous digitalis-like substances, which still have to be defined in most cases in their structure. This group of substances has its chemically well known coun terpart in steroids from plant and toad origin which are generally known as "car diac glycosides". They are in medical use since at least 200 years in medicine in the treatment of heart diseases.
Basic Neurochemistry
Author: R. Wayne Albers
Publisher: Academic Press
ISBN: 0080959016
Category : Science
Languages : en
Pages : 1121
Book Description
Basic Neurochemistry, Eighth Edition, is the updated version of the outstanding and comprehensive classic text on neurochemistry. For more than forty years, this text has been the worldwide standard for information on the biochemistry of the nervous system, serving as a resource for postgraduate trainees and teachers in neurology, psychiatry, and basic neuroscience, as well as for medical, graduate, and postgraduate students and instructors in the neurosciences. The text has evolved, as intended, with the science. This new edition continues to cover the basics of neurochemistry as in the earlier editions, along with expanded and additional coverage of new research from intracellular trafficking, stem cells, adult neurogenesis, regeneration, and lipid messengers. It contains expanded coverage of all major neurodegenerative and psychiatric disorders, including the neurochemistry of addiction, pain, and hearing and balance; the neurobiology of learning and memory; sleep; myelin structure, development, and disease; autism; and neuroimmunology. - Completely updated text with new authors and material, and many entirely new chapters - Over 400 fully revised figures in splendid color - 61 chapters covering the range of cellular, molecular and medical neuroscience - Translational science boxes emphasizing the connections between basic and clinical neuroscience - Companion website at http://elsevierdirect.com/companions/9780123749475
Publisher: Academic Press
ISBN: 0080959016
Category : Science
Languages : en
Pages : 1121
Book Description
Basic Neurochemistry, Eighth Edition, is the updated version of the outstanding and comprehensive classic text on neurochemistry. For more than forty years, this text has been the worldwide standard for information on the biochemistry of the nervous system, serving as a resource for postgraduate trainees and teachers in neurology, psychiatry, and basic neuroscience, as well as for medical, graduate, and postgraduate students and instructors in the neurosciences. The text has evolved, as intended, with the science. This new edition continues to cover the basics of neurochemistry as in the earlier editions, along with expanded and additional coverage of new research from intracellular trafficking, stem cells, adult neurogenesis, regeneration, and lipid messengers. It contains expanded coverage of all major neurodegenerative and psychiatric disorders, including the neurochemistry of addiction, pain, and hearing and balance; the neurobiology of learning and memory; sleep; myelin structure, development, and disease; autism; and neuroimmunology. - Completely updated text with new authors and material, and many entirely new chapters - Over 400 fully revised figures in splendid color - 61 chapters covering the range of cellular, molecular and medical neuroscience - Translational science boxes emphasizing the connections between basic and clinical neuroscience - Companion website at http://elsevierdirect.com/companions/9780123749475
The Enzymes of Biological Membranes
Author: Anthony Martonosi
Publisher: Springer Science & Business Media
ISBN: 1468426583
Category : Science
Languages : en
Pages : 461
Book Description
Much of the information currently available on the transport systems of bacterial and animal cell membranes and their mode of coupling to metabolic supply of energy can be found in this volume. Consideration of the participating enzymes dictated the choice of topics: Several transport systems where little information is available on the enzymology of the process are not included, while separate chapters deal with y-glutamyl transpeptidase and intestinal disaccharidases which meet many of the requirements of transport enzymes. The volume also includes two chapters on photosynthetic membranes as a general introduction to the topic. Other aspects of biological transport and photosynthesis will be developed in detail in a forthcoming volume now in preparation. These chapters reveal the excitement and rapid advance of the field, the daily reports of new concepts, new techniques, and new experimental findings which instantly interact to generate further progress. Our aim was to provide a starting point for those who are just beginning, and an opportunity for others to stop, take stock, and start in a new direction. My warmest thanks to all who contributed to this volume.
Publisher: Springer Science & Business Media
ISBN: 1468426583
Category : Science
Languages : en
Pages : 461
Book Description
Much of the information currently available on the transport systems of bacterial and animal cell membranes and their mode of coupling to metabolic supply of energy can be found in this volume. Consideration of the participating enzymes dictated the choice of topics: Several transport systems where little information is available on the enzymology of the process are not included, while separate chapters deal with y-glutamyl transpeptidase and intestinal disaccharidases which meet many of the requirements of transport enzymes. The volume also includes two chapters on photosynthetic membranes as a general introduction to the topic. Other aspects of biological transport and photosynthesis will be developed in detail in a forthcoming volume now in preparation. These chapters reveal the excitement and rapid advance of the field, the daily reports of new concepts, new techniques, and new experimental findings which instantly interact to generate further progress. Our aim was to provide a starting point for those who are just beginning, and an opportunity for others to stop, take stock, and start in a new direction. My warmest thanks to all who contributed to this volume.
Regulation of Membrane Na+-K+ ATPase
Author: Sajal Chakraborti
Publisher: Springer
ISBN: 3319247506
Category : Science
Languages : en
Pages : 434
Book Description
Na+-K+ ATPase or Na-pump ATPase, a member of “P”-type ATPase superfamily, is characterized by association of multiple isoforms mainly of it’s α- and β- subunits. At present four different α- (α-1,α-2,α-3 and α-4) and three β- (β-1, β-2, and β-3) isoforms have been identified in mammalian cells and their differential expressions are tissue specific. Regulation of Na+-K+ ATPase activity is an important but a complex process, which involves short-term and long-term mechanisms. Short-term regulation of Na+-K+ ATPase is either mediated by changes in intracellular Na+ concentrations that directly affect the Na+-pump activity or by phosphorylation/dephosphorylation-mediated by some stimulants leading to changes in its expression and transport properties. On the other hand, long-term regulation of Na+-K+ ATPase is mediated by hormones, such as mineralocorticoids and thyroid hormones, which cause changes in the transcription of genes of α- and β- subunits leading to an increased expression in the level of Na+-pump. Several studies have revealed a relatively new type of regulation that involves the association of small, single span membrane proteins with this enzyme. These proteins belong to the FXYD family, the members of which share a common signature sequence encompassing the transmembra ne domain adjacent to the isoform(s) of α-β subunits of Na+-K+ ATPase. Considering the extraordinary importance of Na+-K+ ATPase in cellular function, several internationally established investigators have contributed their articles in the monograph entitled “Regulation of Membrane Na+-K+ ATPase” for inspiring young scientists and graduate students to enrich their knowledge on the enzyme, and we are sure that this book will soon be considered as a comprehensive scientific literature in the area of Na+-K+ ATPase regulation in health and disease.
Publisher: Springer
ISBN: 3319247506
Category : Science
Languages : en
Pages : 434
Book Description
Na+-K+ ATPase or Na-pump ATPase, a member of “P”-type ATPase superfamily, is characterized by association of multiple isoforms mainly of it’s α- and β- subunits. At present four different α- (α-1,α-2,α-3 and α-4) and three β- (β-1, β-2, and β-3) isoforms have been identified in mammalian cells and their differential expressions are tissue specific. Regulation of Na+-K+ ATPase activity is an important but a complex process, which involves short-term and long-term mechanisms. Short-term regulation of Na+-K+ ATPase is either mediated by changes in intracellular Na+ concentrations that directly affect the Na+-pump activity or by phosphorylation/dephosphorylation-mediated by some stimulants leading to changes in its expression and transport properties. On the other hand, long-term regulation of Na+-K+ ATPase is mediated by hormones, such as mineralocorticoids and thyroid hormones, which cause changes in the transcription of genes of α- and β- subunits leading to an increased expression in the level of Na+-pump. Several studies have revealed a relatively new type of regulation that involves the association of small, single span membrane proteins with this enzyme. These proteins belong to the FXYD family, the members of which share a common signature sequence encompassing the transmembra ne domain adjacent to the isoform(s) of α-β subunits of Na+-K+ ATPase. Considering the extraordinary importance of Na+-K+ ATPase in cellular function, several internationally established investigators have contributed their articles in the monograph entitled “Regulation of Membrane Na+-K+ ATPase” for inspiring young scientists and graduate students to enrich their knowledge on the enzyme, and we are sure that this book will soon be considered as a comprehensive scientific literature in the area of Na+-K+ ATPase regulation in health and disease.
Electrogenic Ion Pumps
Author: Peter Läuger
Publisher: Sinauer Associates, Incorporated
ISBN:
Category : Science
Languages : en
Pages : 336
Book Description
Electrogenic ion pumps convert chemical, reduction-oxidation, or light energy- into ion concentration differences across all living cells. They are the engines that run cells. In this text, Dr Lunger develops the principles of physical chemistry required to understand the functions of these macromolecules.
Publisher: Sinauer Associates, Incorporated
ISBN:
Category : Science
Languages : en
Pages : 336
Book Description
Electrogenic ion pumps convert chemical, reduction-oxidation, or light energy- into ion concentration differences across all living cells. They are the engines that run cells. In this text, Dr Lunger develops the principles of physical chemistry required to understand the functions of these macromolecules.
Insulin Action
Author: Ashok K. Srivastava
Publisher: Springer Science & Business Media
ISBN: 9780792381136
Category : Science
Languages : en
Pages : 206
Book Description
In 1996 the 75th anniversary of the discovery of insulin was celebrated at the University of Toronto, the scene of that discovery in 1921. This volume was stimulated by the scientific program which was staged at that time and brought together much of the world's best talent to discuss and analyze the most recent developments in our understanding of pancreatic function, insulin secretion, the interaction of insulin with its target tissues, the mechanism of insulin action at the cellular level, and the defects which underlie both Type I (insulin-dependent diabetes mellitus, IDDM) and Type II (noninsulin-dependent diabetes mellitus, NIDDM) forms of the disease. We have chosen to focus the present volume on work related to insulin action.
Publisher: Springer Science & Business Media
ISBN: 9780792381136
Category : Science
Languages : en
Pages : 206
Book Description
In 1996 the 75th anniversary of the discovery of insulin was celebrated at the University of Toronto, the scene of that discovery in 1921. This volume was stimulated by the scientific program which was staged at that time and brought together much of the world's best talent to discuss and analyze the most recent developments in our understanding of pancreatic function, insulin secretion, the interaction of insulin with its target tissues, the mechanism of insulin action at the cellular level, and the defects which underlie both Type I (insulin-dependent diabetes mellitus, IDDM) and Type II (noninsulin-dependent diabetes mellitus, NIDDM) forms of the disease. We have chosen to focus the present volume on work related to insulin action.
Brain Hypoxia and Ischemia
Author: Gabriel G. Haddad
Publisher: Springer Science & Business Media
ISBN: 1603275797
Category : Medical
Languages : en
Pages : 363
Book Description
Brain Hypoxia and Ischemia explores the various aspects of cell death and survival that are crucial for understanding the basic mechanisms underlying brain hypoxia and ischemia. Chapters focus on a panorama of issues including the role of ion channels/transporters, mitochondria and apoptotic mechanisms, the roles of glutamate/NMDA, mechanisms in penumbral cells and the importance of intermittent hypoxia and gene regulation under these stressful conditions. The volume explores findings from both mammalian and invertebrate model systems and their applicability to human systems and diseases. Careful consideration is also given to differences in hypoxia and ischemia across development. This volume aims to increase the understanding of these mechanisms and to stimulate research on better diagnosis and treatment of diseases that afflict the brain and potentially other organs when O2 levels are dysregulated. Brain Hypoxia and Ischemia is designed for neuroscientists, clinicians and medical/graduate students for use in both basic research and clinical practice.
Publisher: Springer Science & Business Media
ISBN: 1603275797
Category : Medical
Languages : en
Pages : 363
Book Description
Brain Hypoxia and Ischemia explores the various aspects of cell death and survival that are crucial for understanding the basic mechanisms underlying brain hypoxia and ischemia. Chapters focus on a panorama of issues including the role of ion channels/transporters, mitochondria and apoptotic mechanisms, the roles of glutamate/NMDA, mechanisms in penumbral cells and the importance of intermittent hypoxia and gene regulation under these stressful conditions. The volume explores findings from both mammalian and invertebrate model systems and their applicability to human systems and diseases. Careful consideration is also given to differences in hypoxia and ischemia across development. This volume aims to increase the understanding of these mechanisms and to stimulate research on better diagnosis and treatment of diseases that afflict the brain and potentially other organs when O2 levels are dysregulated. Brain Hypoxia and Ischemia is designed for neuroscientists, clinicians and medical/graduate students for use in both basic research and clinical practice.
Current Topics in Membranes
Author:
Publisher: Academic Press
ISBN: 0080585108
Category : Science
Languages : en
Pages : 477
Book Description
Current Topics in Membranes
Publisher: Academic Press
ISBN: 0080585108
Category : Science
Languages : en
Pages : 477
Book Description
Current Topics in Membranes
Red Blood Cell Membranes
Author: Peter Agre
Publisher: CRC Press
ISBN: 9780824780227
Category : Science
Languages : en
Pages : 768
Book Description
This book is devoted to the red blood cell membrane, its structure and function, and abnormalities in disease states. It presents a well-documented and well-illustrated comprehensive picture of clinical manifestations of red blood cell disorders.
Publisher: CRC Press
ISBN: 9780824780227
Category : Science
Languages : en
Pages : 768
Book Description
This book is devoted to the red blood cell membrane, its structure and function, and abnormalities in disease states. It presents a well-documented and well-illustrated comprehensive picture of clinical manifestations of red blood cell disorders.