Author: John D. Jacoby
Publisher: CreateSpace
ISBN: 9781441464392
Category : Science
Languages : en
Pages : 146
Book Description
In 1824, Sadi Carnot postulated a monumental theory, which ranks with the greatest of scientific classics. He became immortal when he published his technical paper ”Reflections on the Motive Power of Heat”, which included his famous “Carnot cycle” theory. His theory is included in almost every thermodynamics, engineering, and physics course in colleges worldwide. It defines the maximum thermal efficiency of all heat engines operating within the same temperature range. Now, "The Most Efficient Engine" cycle, using a different approach, defines the maximum thermal efficiency as does the Carnot cycle. In addition, it relates temperature, efficiency, and power in a meaningful way, giving better insight to heat engine operation. This book includes the Carnot cycle, the Stirling cycle, and the "Most Efficient Engine" cycle, along with some relevant thermodynamics. As an interesting, surprising, and amazing sidelight, the "Most Efficient Engine" cycle equation, for efficiency at maximum power, is validated by and validates the widely quoted Chambadal - Novikov - Curzon - Ahlborn equation , giving the exact same results. e = 1-SQR (TL/TH) The book will appeal to a broad spectrum of readers. It promises to be another classic
The Most Efficient Engine
Author: John D. Jacoby
Publisher: CreateSpace
ISBN: 9781441464392
Category : Science
Languages : en
Pages : 146
Book Description
In 1824, Sadi Carnot postulated a monumental theory, which ranks with the greatest of scientific classics. He became immortal when he published his technical paper ”Reflections on the Motive Power of Heat”, which included his famous “Carnot cycle” theory. His theory is included in almost every thermodynamics, engineering, and physics course in colleges worldwide. It defines the maximum thermal efficiency of all heat engines operating within the same temperature range. Now, "The Most Efficient Engine" cycle, using a different approach, defines the maximum thermal efficiency as does the Carnot cycle. In addition, it relates temperature, efficiency, and power in a meaningful way, giving better insight to heat engine operation. This book includes the Carnot cycle, the Stirling cycle, and the "Most Efficient Engine" cycle, along with some relevant thermodynamics. As an interesting, surprising, and amazing sidelight, the "Most Efficient Engine" cycle equation, for efficiency at maximum power, is validated by and validates the widely quoted Chambadal - Novikov - Curzon - Ahlborn equation , giving the exact same results. e = 1-SQR (TL/TH) The book will appeal to a broad spectrum of readers. It promises to be another classic
Publisher: CreateSpace
ISBN: 9781441464392
Category : Science
Languages : en
Pages : 146
Book Description
In 1824, Sadi Carnot postulated a monumental theory, which ranks with the greatest of scientific classics. He became immortal when he published his technical paper ”Reflections on the Motive Power of Heat”, which included his famous “Carnot cycle” theory. His theory is included in almost every thermodynamics, engineering, and physics course in colleges worldwide. It defines the maximum thermal efficiency of all heat engines operating within the same temperature range. Now, "The Most Efficient Engine" cycle, using a different approach, defines the maximum thermal efficiency as does the Carnot cycle. In addition, it relates temperature, efficiency, and power in a meaningful way, giving better insight to heat engine operation. This book includes the Carnot cycle, the Stirling cycle, and the "Most Efficient Engine" cycle, along with some relevant thermodynamics. As an interesting, surprising, and amazing sidelight, the "Most Efficient Engine" cycle equation, for efficiency at maximum power, is validated by and validates the widely quoted Chambadal - Novikov - Curzon - Ahlborn equation , giving the exact same results. e = 1-SQR (TL/TH) The book will appeal to a broad spectrum of readers. It promises to be another classic
Assessment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373
Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373
Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Commercial Aircraft Propulsion and Energy Systems Research
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
Piston Engine-Based Power Plants
Author: Paul Breeze
Publisher: Academic Press
ISBN: 0128129050
Category : Science
Languages : en
Pages : 103
Book Description
Piston Engine-Based Power Plants presents Breeze's most up-to-date discussion and clear and concise analysis of this resource, aimed at those working and researching in the area. Various engine types including Diesel and Stirling are discussed, with consideration of economic factors and important planning considerations, such as the size and speed of the plant. Breeze also evaluates the emissions which piston engines can create and considers ways of planning for and controlling those. - Explores various types of engines used to power automotive power plants such as internal combustion, spark-ignition and dual-fuel - Discusses the engine cycles, size and speed - Evaluates emissions and considers the various economic factors involved
Publisher: Academic Press
ISBN: 0128129050
Category : Science
Languages : en
Pages : 103
Book Description
Piston Engine-Based Power Plants presents Breeze's most up-to-date discussion and clear and concise analysis of this resource, aimed at those working and researching in the area. Various engine types including Diesel and Stirling are discussed, with consideration of economic factors and important planning considerations, such as the size and speed of the plant. Breeze also evaluates the emissions which piston engines can create and considers ways of planning for and controlling those. - Explores various types of engines used to power automotive power plants such as internal combustion, spark-ignition and dual-fuel - Discusses the engine cycles, size and speed - Evaluates emissions and considers the various economic factors involved
Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309373913
Category : Science
Languages : en
Pages : 812
Book Description
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
Publisher: National Academies Press
ISBN: 0309373913
Category : Science
Languages : en
Pages : 812
Book Description
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
Modelling Diesel Combustion
Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Practical Diesel-engine Combustion Analysis
Author: Bertrand D. Hsu
Publisher: SAE International
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
The diesel engine is one of the most efficient types of heat engines and is widely used as a prime mover for many applications. In recent years, with the aid of modern computers, engine combustion modeling has made great progress. However, due to the complexities of the processes involved in the practical diesel engine, there are still too many unknowns preventing computational prediction to have the accuracy level required by industry. This book examines some basic characteristics of diesel engine combustion process, and describes the commonly used tool to analyze combustion - heat release analysis. It addition, Practical Diesel-Engine Combustion Analysis describes the performance changes that might be encountered in the engine user environment, with a goal of helping the reader analyze his own practical combustion problems. Chapters include: Combustion and Fuel-Injection Processes in the Diesel Engine Heat Release and its Effect on Engine Performance Alternate Fuels Combustion Analysis
Publisher: SAE International
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
The diesel engine is one of the most efficient types of heat engines and is widely used as a prime mover for many applications. In recent years, with the aid of modern computers, engine combustion modeling has made great progress. However, due to the complexities of the processes involved in the practical diesel engine, there are still too many unknowns preventing computational prediction to have the accuracy level required by industry. This book examines some basic characteristics of diesel engine combustion process, and describes the commonly used tool to analyze combustion - heat release analysis. It addition, Practical Diesel-Engine Combustion Analysis describes the performance changes that might be encountered in the engine user environment, with a goal of helping the reader analyze his own practical combustion problems. Chapters include: Combustion and Fuel-Injection Processes in the Diesel Engine Heat Release and its Effect on Engine Performance Alternate Fuels Combustion Analysis
Synthesis of Subsonic Airplane Design
Author: E. Torenbeek
Publisher: Springer Science & Business Media
ISBN: 9401732027
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book.
Publisher: Springer Science & Business Media
ISBN: 9401732027
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book.
The World's Most Fuel Efficient Vehicle
Author: Jean-Jacques Santin
Publisher: vdf Hochschulverlag AG
ISBN: 3728131342
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
The goal of the PAC-Car project, a joint undertaking of ETH Zurich and ist partners, was to build a vehicle powered by a hydrogen fuel cell system that uses as little fuel as possible. PAC-Car II set a new world record in fuel efficient driving (the equivalent of 5,385 km per liter of gasoline) during the Shell Eco-marathon in Ladoux (France) on June 26, 2005. This book, addressed to graduate students, engineering professors and others interested in fuel economy contests, is the frst to summarize the issues involved when designing and constructing a vehicle for fuel economy competitions. It describes the adventure of developing the PAC-Car II and others some specifc technical advice for anyone who wants to design an ultra-lightweight land vehicle, whatever its energy source. PAC-Car was a joint project of ETH Zurich and partners from academia and industry. The goal was to build a vehicle powered by a fuel cell system that uses as little fuel as possible. PAC-Car II set a new world record in fuel efficient driving (5,385 km per liter of petrol equivalent) during the Shell Eco-marathon in Ladoux (France) on June 26, 2005. This book is the first to summarize the design and construction issues of a vehicle for fuel economy contests. It deals with the adventure of developing this world-record vehicle and provides some specific technical tips. It will help anyone who is designing an ultra lightweight land vehicle, whatever its source of energy (thermal engine, human power, solar panels), and/or those who are interested in fuel cell applications. The book addresses graduate students and teachers of engineering disciplines as well as other people interested in fuel economy contests. Content: fuel economy competitions, design phase of a fuel economy vehicle, tires, vehicle behavior, aerodynamics, vehicle body structure, wheels, front axle and steering system, powertrain, fuel cell system, driving strategy, conclusion and outlook.
Publisher: vdf Hochschulverlag AG
ISBN: 3728131342
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
The goal of the PAC-Car project, a joint undertaking of ETH Zurich and ist partners, was to build a vehicle powered by a hydrogen fuel cell system that uses as little fuel as possible. PAC-Car II set a new world record in fuel efficient driving (the equivalent of 5,385 km per liter of gasoline) during the Shell Eco-marathon in Ladoux (France) on June 26, 2005. This book, addressed to graduate students, engineering professors and others interested in fuel economy contests, is the frst to summarize the issues involved when designing and constructing a vehicle for fuel economy competitions. It describes the adventure of developing the PAC-Car II and others some specifc technical advice for anyone who wants to design an ultra-lightweight land vehicle, whatever its energy source. PAC-Car was a joint project of ETH Zurich and partners from academia and industry. The goal was to build a vehicle powered by a fuel cell system that uses as little fuel as possible. PAC-Car II set a new world record in fuel efficient driving (5,385 km per liter of petrol equivalent) during the Shell Eco-marathon in Ladoux (France) on June 26, 2005. This book is the first to summarize the design and construction issues of a vehicle for fuel economy contests. It deals with the adventure of developing this world-record vehicle and provides some specific technical tips. It will help anyone who is designing an ultra lightweight land vehicle, whatever its source of energy (thermal engine, human power, solar panels), and/or those who are interested in fuel cell applications. The book addresses graduate students and teachers of engineering disciplines as well as other people interested in fuel economy contests. Content: fuel economy competitions, design phase of a fuel economy vehicle, tires, vehicle behavior, aerodynamics, vehicle body structure, wheels, front axle and steering system, powertrain, fuel cell system, driving strategy, conclusion and outlook.
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251
Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251
Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.