The Method of Weighted Residuals and Variational Principles

The Method of Weighted Residuals and Variational Principles PDF Author: Bruce A. Finlayson
Publisher: SIAM
ISBN: 1611973244
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.

The Method of Weighted Residuals and Variational Principles

The Method of Weighted Residuals and Variational Principles PDF Author: Bruce A. Finlayson
Publisher: SIAM
ISBN: 1611973244
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.

The Method of Weighted Residuals and Variational Principles, with Application in Fluid Mechanics, Heat and Mass Transfer

The Method of Weighted Residuals and Variational Principles, with Application in Fluid Mechanics, Heat and Mass Transfer PDF Author: Courtney Finlayson
Publisher: Elsevier
ISBN: 0080955967
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
The Method of Weighted Residuals and Variational Principles, with Application in Fluid Mechanics, Heat and Mass Transfer

The Method of Weighted Residuals and Variational Principles

The Method of Weighted Residuals and Variational Principles PDF Author: B. Finlayson
Publisher:
ISBN:
Category :
Languages : en
Pages : 412

Get Book Here

Book Description


The Method of Weighted Residuals and Variational Principles

The Method of Weighted Residuals and Variational Principles PDF Author: Bruce A. Finlayson
Publisher: SIAM
ISBN: 1611973236
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.

THE METHOD OF WEIGHTED RESIDUALS AND VARIATIONAL PRINCIPLES WITH APPLICATION IN FLUID MECHANICS HEAT AND MASS TRANSFER (Volume 87).

THE METHOD OF WEIGHTED RESIDUALS AND VARIATIONAL PRINCIPLES WITH APPLICATION IN FLUID MECHANICS HEAT AND MASS TRANSFER (Volume 87). PDF Author: BA. FINLAYSON
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF Author: Snehashish Chakraverty
Publisher: John Wiley & Sons
ISBN: 1119423449
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Introduction to Numerical Methods for Variational Problems

Introduction to Numerical Methods for Variational Problems PDF Author: Hans Petter Langtangen
Publisher: Springer Nature
ISBN: 3030237885
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Variational and Extremum Principles in Macroscopic Systems

Variational and Extremum Principles in Macroscopic Systems PDF Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0080456146
Category : Technology & Engineering
Languages : en
Pages : 810

Get Book Here

Book Description
Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin’s maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. A unique multidisciplinary synthesis of variational and extremum principles in theory and application A comprehensive review of current and past achievements in variational formulations for macroscopic processes Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy

The Finite Element Method

The Finite Element Method PDF Author: Douglas H. Norrie
Publisher: Academic Press
ISBN: 1483218910
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
The Finite Element Method: Fundamentals and Applications demonstrates the generality of the finite element method by providing a unified treatment of fundamentals and a broad coverage of applications. Topics covered include field problems and their approximate solutions; the variational method based on the Hilbert space; and the Ritz finite element method. Finite element applications in solid and structural mechanics are also discussed. Comprised of 16 chapters, this book begins with an introduction to the formulation and classification of physical problems, followed by a review of field or continuum problems and their approximate solutions by the method of trial functions. It is shown that the finite element method is a subclass of the method of trial functions and that a finite element formulation can, in principle, be developed for most trial function procedures. Variational and residual trial function methods are considered in some detail and their convergence is examined. After discussing the calculus of variations, both in classical and Hilbert space form, the fundamentals of the finite element method are analyzed. The variational approach is illustrated by outlining the Ritz finite element method. The application of the finite element method to solid and structural mechanics is also considered. This monograph will appeal to undergraduate and graduate students, engineers, scientists, and applied mathematicians.

Foundations of Applied Mathematics

Foundations of Applied Mathematics PDF Author: Michael D. Greenberg
Publisher: Courier Corporation
ISBN: 0486492796
Category : Mathematics
Languages : en
Pages : 660

Get Book Here

Book Description
"A longtime classic text in applied mathematics, this volume also serves as a reference for undergraduate and graduate students of engineering. Topics include real variable theory, complex variables, linear analysis, partial and ordinary differential equations, and other subjects. Answers to selected exercises are provided, along with Fourier and Laplace transformation tables and useful formulas. 1978 edition"--