The Maximum Principle

The Maximum Principle PDF Author: Patrizia Pucci
Publisher: Springer Science & Business Media
ISBN: 3764381450
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

The Maximum Principle

The Maximum Principle PDF Author: Patrizia Pucci
Publisher: Springer Science & Business Media
ISBN: 3764381450
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

Maximum Principles and Geometric Applications

Maximum Principles and Geometric Applications PDF Author: Luis J. Alías
Publisher: Springer
ISBN: 3319243373
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

An Introduction to Maximum Principles and Symmetry in Elliptic Problems

An Introduction to Maximum Principles and Symmetry in Elliptic Problems PDF Author: L. E. Fraenkel
Publisher: Cambridge University Press
ISBN: 0521461952
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Advanced text, originally published in 2000, on differential equations, with plentiful supply of exercises all with detailed hints.

Income, Wealth, and the Maximum Principle

Income, Wealth, and the Maximum Principle PDF Author: Martin L. Weitzman
Publisher: Harvard University Press
ISBN: 0674045076
Category : Business & Economics
Languages : en
Pages : 352

Get Book Here

Book Description
This compact and original exposition of optimal control theory and applications is designed for graduate and advanced undergraduate students in economics. It presents a new elementary yet rigorous proof of the maximum principle and a new way of applying the principle that will enable students to solve any one-dimensional problem routinely. Its unified framework illuminates many famous economic examples and models. This work also emphasizes the connection between optimal control theory and the classical themes of capital theory. It offers a fresh approach to fundamental questions such as: What is income? How should it be measured? What is its relation to wealth? The book will be valuable to students who want to formulate and solve dynamic allocation problems. It will also be of interest to any economist who wants to understand results of the latest research on the relationship between comprehensive income accounting and wealth or welfare.

The Robust Maximum Principle

The Robust Maximum Principle PDF Author: Vladimir G. Boltyanski
Publisher: Springer Science & Business Media
ISBN: 0817681523
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field, the authors use new methods to set out a version of OCT’s more refined ‘maximum principle.’ The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games. This book explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.

Elliptic Partial Differential Equations of Second Order

Elliptic Partial Differential Equations of Second Order PDF Author: D. Gilbarg
Publisher: Springer Science & Business Media
ISBN: 364296379X
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.

Optimal Control Theory

Optimal Control Theory PDF Author: Suresh P. Sethi
Publisher: Taylor & Francis US
ISBN: 9780387280929
Category : Business & Economics
Languages : en
Pages : 536

Get Book Here

Book Description
Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the authors have applied to business management problems developed from their research and classroom instruction. Sethi and Thompson have provided management science and economics communities with a thoroughly revised edition of their classic text on Optimal Control Theory. The new edition has been completely refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book contains new results that were not available when the first edition was published, as well as an expansion of the material on stochastic optimal control theory.

Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Order Structure and Topological Methods in Nonlinear Partial Differential Equations PDF Author: Yihong Du
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.

Maximum and Minimum Principles

Maximum and Minimum Principles PDF Author: M. J. Sewell
Publisher: CUP Archive
ISBN: 9780521332446
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
This book provides a unified account of the theory required to establish upper and lower bounds.

50 Years with Hardy Spaces

50 Years with Hardy Spaces PDF Author: Anton Baranov
Publisher: Birkhäuser
ISBN: 3319590782
Category : Mathematics
Languages : en
Pages : 477

Get Book Here

Book Description
Written in honor of Victor Havin (1933–2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linköping University, are also included.