Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Measurement
Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
An Introduction to Measure Theory
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Measuring Penny
Author:
Publisher: Macmillan
ISBN: 0805065725
Category : Juvenile Nonfiction
Languages : en
Pages : 36
Book Description
Lisa's homework assignment is to measure something. The fun begins when she decides to measure her dog, Penny.
Publisher: Macmillan
ISBN: 0805065725
Category : Juvenile Nonfiction
Languages : en
Pages : 36
Book Description
Lisa's homework assignment is to measure something. The fun begins when she decides to measure her dog, Penny.
The Royal Treasure Measure
Author: Trudy Harris
Publisher: Millbrook Press
ISBN: 1467701297
Category : Juvenile Fiction
Languages : en
Pages : 36
Book Description
King Balbazar's kingdom has made a mess of measuring. Curtains are too long, robes are too short, and no one knows how to solve the problem. People measure length with everything from candlesticks to sausages to spoons. Finally, King Balbazar holds a contest. Who will come up with the winning unit of measurement—and what will it be?
Publisher: Millbrook Press
ISBN: 1467701297
Category : Juvenile Fiction
Languages : en
Pages : 36
Book Description
King Balbazar's kingdom has made a mess of measuring. Curtains are too long, robes are too short, and no one knows how to solve the problem. People measure length with everything from candlesticks to sausages to spoons. Finally, King Balbazar holds a contest. Who will come up with the winning unit of measurement—and what will it be?
Measure, Integration & Real Analysis
Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Abstract Measurement Theory
Author: Louis Narens
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents a theory of measurement, one that is "abstract" in that it is concerned with highly general axiomatizations of empirical and qualitative settings and how these can be represented quantitatively.
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents a theory of measurement, one that is "abstract" in that it is concerned with highly general axiomatizations of empirical and qualitative settings and how these can be represented quantitatively.
Integration, Measure and Probability
Author: H. R. Pitt
Publisher: Courier Corporation
ISBN: 0486488152
Category : Mathematics
Languages : en
Pages : 130
Book Description
Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486488152
Category : Mathematics
Languages : en
Pages : 130
Book Description
Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.
The Concentration of Measure Phenomenon
Author: Michel Ledoux
Publisher: American Mathematical Soc.
ISBN: 0821837923
Category : Mathematics
Languages : en
Pages : 194
Book Description
The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.
Publisher: American Mathematical Soc.
ISBN: 0821837923
Category : Mathematics
Languages : en
Pages : 194
Book Description
The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.
Just a Little Bit
Author: Ann Tompert
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395778760
Category : Juvenile Fiction
Languages : en
Pages : 38
Book Description
For use in schools and libraries only. When Mouse and Elephant decide to go on the seesaw, Mouse needs a lot of help from other animals before they can go up and down.
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395778760
Category : Juvenile Fiction
Languages : en
Pages : 38
Book Description
For use in schools and libraries only. When Mouse and Elephant decide to go on the seesaw, Mouse needs a lot of help from other animals before they can go up and down.
Measure and Integral
Author: Richard Wheeden
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.