The Mathematics of Chip-Firing

The Mathematics of Chip-Firing PDF Author: Caroline J. Klivans
Publisher: CRC Press
ISBN: 135180099X
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.

The Mathematics of Chip-Firing

The Mathematics of Chip-Firing PDF Author: Caroline J. Klivans
Publisher: CRC Press
ISBN: 135180099X
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.

Divisors and Sandpiles

Divisors and Sandpiles PDF Author: Scott Corry
Publisher: American Mathematical Soc.
ISBN: 1470442183
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and Part 1 culminates in a full exposition of the graph-theoretic Riemann-Roch theorem due to M. Baker and S. Norine. The text leverages the reader's understanding of the discrete story to provide a brief overview of the classical theory of Riemann surfaces. Part 2 focuses on sandpiles, which are toy models of physical systems with dynamics controlled by the discrete Laplacian of the underlying graph. The text provides a careful introduction to the sandpile group and the abelian sandpile model, leading ultimately to L. Levine's threshold density theorem for the fixed-energy sandpile Markov chain. In a precise sense, the theory of sandpiles is dual to the theory of divisors, and there are many beautiful connections between the first two parts of the book. Part 3 addresses various topics connecting the theory of chip-firing to other areas of mathematics, including the matrix-tree theorem, harmonic morphisms, parking functions, M-matrices, matroids, the Tutte polynomial, and simplicial homology. The text is suitable for advanced undergraduates and beginning graduate students.

Adventures in Graph Theory

Adventures in Graph Theory PDF Author: W. David Joyner
Publisher: Birkhäuser
ISBN: 3319683837
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards advanced undergraduate and graduate students and is particularly useful for those trying to decide what type of problem to tackle for their dissertation. This book can also serve as a reference for anyone interested in exploring how they can apply graph theory to other parts of mathematics.

A Project-Based Guide to Undergraduate Research in Mathematics

A Project-Based Guide to Undergraduate Research in Mathematics PDF Author: Pamela E. Harris
Publisher: Springer Nature
ISBN: 3030378535
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
This volume provides accessible and self-contained research problems designed for undergraduate student projects, and simultaneously promotes the development of sustainable undergraduate research programs. The chapters in this work span a variety of topical areas of pure and applied mathematics and mathematics education. Each chapter gives a self-contained introduction on a research topic with an emphasis on the specific tools and knowledge needed to create and maintain fruitful research programs for undergraduates. Some of the topics discussed include:• Disease modeling• Tropical curves and surfaces• Numerical semigroups• Mathematics EducationThis volume will primarily appeal to undergraduate students interested in pursuing research projects and faculty members seeking to mentor them. It may also aid students and faculty participating in independent studies and capstone projects.

The Probabilistic Method

The Probabilistic Method PDF Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073

Get Book Here

Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

A Course in Combinatorics

A Course in Combinatorics PDF Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.

Extended Abstracts EuroComb 2021

Extended Abstracts EuroComb 2021 PDF Author: Jaroslav Nešetřil
Publisher: Birkhäuser
ISBN: 9783030838225
Category : Mathematics
Languages : en
Pages : 858

Get Book Here

Book Description
This book collects the extended abstracts of the accepted contributions to EuroComb21. A similar book is published at every edition of EuroComb (every two years since 2001) collecting the most recent advances in combinatorics, graph theory, and related areas. It has a wide audience in the areas, and the papers are used and referenced broadly.

Game Theory, Alive

Game Theory, Alive PDF Author: Anna R. Karlin
Publisher: American Mathematical Soc.
ISBN: 1470419823
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. The importance of game-theoretic thinking transcends the academic setting—for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.

Illustrating Mathematics

Illustrating Mathematics PDF Author: Diana Davis
Publisher: American Mathematical Soc.
ISBN: 1470461226
Category : Education
Languages : en
Pages : 171

Get Book Here

Book Description
This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.