Author: Stephen P. Bradley
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 748
Book Description
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Applied Mathematical Programming
Author: Stephen P. Bradley
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 748
Book Description
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 748
Book Description
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Introduction to Mathematical Programming
Author: Russell C. Walker
Publisher: Pearson Learning Solutions
ISBN: 9781256944683
Category : Programming (Mathematics)
Languages : en
Pages : 0
Book Description
Publisher: Pearson Learning Solutions
ISBN: 9781256944683
Category : Programming (Mathematics)
Languages : en
Pages : 0
Book Description
Mathematical Programming for Industrial Engineers
Author: Mordecai Avriel
Publisher: CRC Press
ISBN: 9780824796204
Category : Mathematics
Languages : en
Pages : 662
Book Description
Setting out to bridge the gap between the theory of mathematical programming and the varied, real-world practices of industrial engineers, this work introduces developments in linear, integer, multiobjective, stochastic, network and dynamic programing. It details many relevant industrial-engineering applications.;College or university bookstores may order five or more copies at a special student price, available upon request from Marcel Dekker, Inc.
Publisher: CRC Press
ISBN: 9780824796204
Category : Mathematics
Languages : en
Pages : 662
Book Description
Setting out to bridge the gap between the theory of mathematical programming and the varied, real-world practices of industrial engineers, this work introduces developments in linear, integer, multiobjective, stochastic, network and dynamic programing. It details many relevant industrial-engineering applications.;College or university bookstores may order five or more copies at a special student price, available upon request from Marcel Dekker, Inc.
Algorithmic Principles of Mathematical Programming
Author: Ulrich Faigle
Publisher: Springer Science & Business Media
ISBN: 9781402008528
Category : Computers
Languages : en
Pages : 360
Book Description
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. The book is equally suited for self-study for a motivated beginner and for a comprehensive course on the principles of mathematical programming within an applied mathematics or computer science curriculum at advanced undergraduate or graduate level. The presentation of the material is such that smaller modules on discrete optimization, linear programming, and nonlinear optimization can easily be extracted separately and used for shorter specialized courses on these subjects.
Publisher: Springer Science & Business Media
ISBN: 9781402008528
Category : Computers
Languages : en
Pages : 360
Book Description
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. The book is equally suited for self-study for a motivated beginner and for a comprehensive course on the principles of mathematical programming within an applied mathematics or computer science curriculum at advanced undergraduate or graduate level. The presentation of the material is such that smaller modules on discrete optimization, linear programming, and nonlinear optimization can easily be extracted separately and used for shorter specialized courses on these subjects.
Mathematical Programming
Author: Michel Minoux
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 526
Book Description
This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 526
Book Description
This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Progress in Mathematical Programming
Author: Nimrod Megiddo
Publisher: Springer Science & Business Media
ISBN: 1461396174
Category : Mathematics
Languages : en
Pages : 164
Book Description
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
Publisher: Springer Science & Business Media
ISBN: 1461396174
Category : Mathematics
Languages : en
Pages : 164
Book Description
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
Modelling in Mathematical Programming
Author: José Manuel García Sánchez
Publisher: Springer
ISBN: 9783030572525
Category : Business & Economics
Languages : en
Pages : 284
Book Description
This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Publisher: Springer
ISBN: 9783030572525
Category : Business & Economics
Languages : en
Pages : 284
Book Description
This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Math for Programmers
Author: Paul Orland
Publisher: Manning Publications
ISBN: 1617295353
Category : Computers
Languages : en
Pages : 686
Book Description
In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Publisher: Manning Publications
ISBN: 1617295353
Category : Computers
Languages : en
Pages : 686
Book Description
In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Mathematical Programming
Author: S. M. Sinha
Publisher: Elsevier
ISBN: 0080535933
Category : Mathematics
Languages : en
Pages : 589
Book Description
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
Publisher: Elsevier
ISBN: 0080535933
Category : Mathematics
Languages : en
Pages : 589
Book Description
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
Decomposition Techniques in Mathematical Programming
Author: Antonio J. Conejo
Publisher: Springer Science & Business Media
ISBN: 3540276866
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.
Publisher: Springer Science & Business Media
ISBN: 3540276866
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.