Author: Hans L. Skriver
Publisher: Springer Science & Business Media
ISBN: 3642818447
Category : Science
Languages : en
Pages : 293
Book Description
The simplifications of band-structure calculations which are now referred to as linear methods were introduced by Ole K. Andersen almost ten years ago. Since then these ideas have been taken up by several workers in the field and translated into computer programmes that generate the band structure of almost any material. As a result, running times on computers have been cut by orders of magnitude. One of the strong motivations behind the original proposal was a desire to give the conventional methods' a physically meaningful content which could be understood even by the non-specialist. Unfortunately, this aspect of lin ear methods seems to have been less well appreciated, and most workers are content to use the latter as efficient computational schemes. The present book is intended to give a reasonably complete description of one particular linear method, the Linear Muffin-Tin Orbital (LMTO) method, without losing sight of the physical content of the technique. It is also meant as a guide to the non-specialist who wants to perform band-structure calculations of his own, for example, to interpret experimental results. For this purpose the book contains a set of computer programmes which allow the user to perform full-scale self-consistent band-structure calculations by means of the LMTO method. In addition, it contains a listing of self-con sistent potential parameters which, for instance, may be used to generate the energy bands of metallic elements.
The LMTO Method
Author: Hans L. Skriver
Publisher: Springer Science & Business Media
ISBN: 3642818447
Category : Science
Languages : en
Pages : 293
Book Description
The simplifications of band-structure calculations which are now referred to as linear methods were introduced by Ole K. Andersen almost ten years ago. Since then these ideas have been taken up by several workers in the field and translated into computer programmes that generate the band structure of almost any material. As a result, running times on computers have been cut by orders of magnitude. One of the strong motivations behind the original proposal was a desire to give the conventional methods' a physically meaningful content which could be understood even by the non-specialist. Unfortunately, this aspect of lin ear methods seems to have been less well appreciated, and most workers are content to use the latter as efficient computational schemes. The present book is intended to give a reasonably complete description of one particular linear method, the Linear Muffin-Tin Orbital (LMTO) method, without losing sight of the physical content of the technique. It is also meant as a guide to the non-specialist who wants to perform band-structure calculations of his own, for example, to interpret experimental results. For this purpose the book contains a set of computer programmes which allow the user to perform full-scale self-consistent band-structure calculations by means of the LMTO method. In addition, it contains a listing of self-con sistent potential parameters which, for instance, may be used to generate the energy bands of metallic elements.
Publisher: Springer Science & Business Media
ISBN: 3642818447
Category : Science
Languages : en
Pages : 293
Book Description
The simplifications of band-structure calculations which are now referred to as linear methods were introduced by Ole K. Andersen almost ten years ago. Since then these ideas have been taken up by several workers in the field and translated into computer programmes that generate the band structure of almost any material. As a result, running times on computers have been cut by orders of magnitude. One of the strong motivations behind the original proposal was a desire to give the conventional methods' a physically meaningful content which could be understood even by the non-specialist. Unfortunately, this aspect of lin ear methods seems to have been less well appreciated, and most workers are content to use the latter as efficient computational schemes. The present book is intended to give a reasonably complete description of one particular linear method, the Linear Muffin-Tin Orbital (LMTO) method, without losing sight of the physical content of the technique. It is also meant as a guide to the non-specialist who wants to perform band-structure calculations of his own, for example, to interpret experimental results. For this purpose the book contains a set of computer programmes which allow the user to perform full-scale self-consistent band-structure calculations by means of the LMTO method. In addition, it contains a listing of self-con sistent potential parameters which, for instance, may be used to generate the energy bands of metallic elements.
Electronic Structure and Physical Properties of Solids
Author: Hugues Dreysse
Publisher: Springer Science & Business Media
ISBN: 3540672389
Category : Science
Languages : en
Pages : 463
Book Description
A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.
Publisher: Springer Science & Business Media
ISBN: 3540672389
Category : Science
Languages : en
Pages : 463
Book Description
A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.
Full-Potential Electronic Structure Method
Author: John M. Wills
Publisher: Springer Science & Business Media
ISBN: 3642151442
Category : Science
Languages : en
Pages : 197
Book Description
This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.
Publisher: Springer Science & Business Media
ISBN: 3642151442
Category : Science
Languages : en
Pages : 197
Book Description
This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.
Electronic Structure Methods for Complex Materials
Author: Wai-Yim Ching
Publisher: OUP Oxford
ISBN: 0191635065
Category : Science
Languages : en
Pages : 328
Book Description
Density functional theory (DFT) has blossomed in the past few decades into a powerful tool that is used by experimentalists and theoreticians alike. This book highlights the extensive contributions that the DFT-based OLCAO method has made to progress in this field, and it demonstrates its competitiveness for performing ab initio calculations on large and complex models of practical systems. A brief historical account and introduction to the elements of the theory set the stage for discussions on semiconductors, insulators, crystalline metals and alloys, complex crystals, non-crystalline solids and liquids, microstructure containing systems and those containing impurities, defects, and surfaces, biomolecular systems, and the technique of ab initio core level spectroscopy calculation.
Publisher: OUP Oxford
ISBN: 0191635065
Category : Science
Languages : en
Pages : 328
Book Description
Density functional theory (DFT) has blossomed in the past few decades into a powerful tool that is used by experimentalists and theoreticians alike. This book highlights the extensive contributions that the DFT-based OLCAO method has made to progress in this field, and it demonstrates its competitiveness for performing ab initio calculations on large and complex models of practical systems. A brief historical account and introduction to the elements of the theory set the stage for discussions on semiconductors, insulators, crystalline metals and alloys, complex crystals, non-crystalline solids and liquids, microstructure containing systems and those containing impurities, defects, and surfaces, biomolecular systems, and the technique of ab initio core level spectroscopy calculation.
Electronic Structure
Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 1108657478
Category : Science
Languages : en
Pages : 791
Book Description
The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader.
Publisher: Cambridge University Press
ISBN: 1108657478
Category : Science
Languages : en
Pages : 791
Book Description
The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader.
Metallic Alloys: Experimental and Theoretical Perspectives
Author: J.S. Faulkner
Publisher: Springer Science & Business Media
ISBN: 9401110921
Category : Science
Languages : en
Pages : 461
Book Description
The development of new materials is recognized as one of the major elements in the overall technological evolution that must go on in order to sustain and even improve the quality of life for citizens of all nations. There are many components to this development, but one is to achieve a better understanding of the properties of materials using the most sophisticated scientific tools that are available. As condensed matter physicists and materials scientists work toward this goal, they find that it is useful to divide their efforts and focus on specific areas, because certain analytical and theoretical techniques will be more useful for the study of one class of materials than another. One such area is the study of metals and metallic alloys, which are used in the manufacture of products as diverse as automobiles and space stations. Progress in this area has been very rapid in recent years, and the new developments come from many different countries. For these reasons the Advanced Research Workshop Programme in the NATO Scientific Affairs Division has seen fit to sponsor several meetings to bring together the researchers and students working in this field from the NATO countries and elsewhere. There have been a series of NATO-ASI's that have dealt with the results of research on the electronic structure of materials and the properties of metals, alloys, and interfaces. They are: "Electrons in finite and infinite structures" P. Phariseau and L.
Publisher: Springer Science & Business Media
ISBN: 9401110921
Category : Science
Languages : en
Pages : 461
Book Description
The development of new materials is recognized as one of the major elements in the overall technological evolution that must go on in order to sustain and even improve the quality of life for citizens of all nations. There are many components to this development, but one is to achieve a better understanding of the properties of materials using the most sophisticated scientific tools that are available. As condensed matter physicists and materials scientists work toward this goal, they find that it is useful to divide their efforts and focus on specific areas, because certain analytical and theoretical techniques will be more useful for the study of one class of materials than another. One such area is the study of metals and metallic alloys, which are used in the manufacture of products as diverse as automobiles and space stations. Progress in this area has been very rapid in recent years, and the new developments come from many different countries. For these reasons the Advanced Research Workshop Programme in the NATO Scientific Affairs Division has seen fit to sponsor several meetings to bring together the researchers and students working in this field from the NATO countries and elsewhere. There have been a series of NATO-ASI's that have dealt with the results of research on the electronic structure of materials and the properties of metals, alloys, and interfaces. They are: "Electrons in finite and infinite structures" P. Phariseau and L.
Advanced Calculations for Defects in Materials
Author: Audrius Alkauskas
Publisher: John Wiley & Sons
ISBN: 3527638539
Category : Science
Languages : en
Pages : 374
Book Description
This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.
Publisher: John Wiley & Sons
ISBN: 3527638539
Category : Science
Languages : en
Pages : 374
Book Description
This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.
Solid-State Photoemission and Related Methods
Author: Wolfgang Schattke
Publisher: John Wiley & Sons
ISBN: 3527621008
Category : Science
Languages : en
Pages : 515
Book Description
Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.
Publisher: John Wiley & Sons
ISBN: 3527621008
Category : Science
Languages : en
Pages : 515
Book Description
Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.
Magnetism: A Synchrotron Radiation Approach
Author: Eric Beaurepaire
Publisher: Springer Science & Business Media
ISBN: 3540332413
Category : Science
Languages : en
Pages : 472
Book Description
This volume contains the edited lectures of the fourth Mittelwihr school on "Magnetism and Synchrotron Radiation". This series of events introduces graduate students and nonspecialists from related disciplines to the field of magnetism and magnetic materials with emphasis on synchrotron radiation as an experimental tool of investigation. These lecture notes present in particular the state of the art regarding the analysis of magnetic properties of new materials.
Publisher: Springer Science & Business Media
ISBN: 3540332413
Category : Science
Languages : en
Pages : 472
Book Description
This volume contains the edited lectures of the fourth Mittelwihr school on "Magnetism and Synchrotron Radiation". This series of events introduces graduate students and nonspecialists from related disciplines to the field of magnetism and magnetic materials with emphasis on synchrotron radiation as an experimental tool of investigation. These lecture notes present in particular the state of the art regarding the analysis of magnetic properties of new materials.
Lectures On Methods Of Electronic Structure Calculations - Proceedings Of The Miniworkshop On "Methods Of Electronic Structure Calculations" And Working Group On "Disordered Alloys"
Author: Ole Krogh Andersen
Publisher: World Scientific
ISBN: 9814583278
Category : Science
Languages : en
Pages : 396
Book Description
Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.
Publisher: World Scientific
ISBN: 9814583278
Category : Science
Languages : en
Pages : 396
Book Description
Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.