The Kernel Function and Conformal Mapping

The Kernel Function and Conformal Mapping PDF Author: Stefan Bergman
Publisher: American Mathematical Soc.
ISBN: 0821815059
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.

The Kernel Function and Conformal Mapping

The Kernel Function and Conformal Mapping PDF Author: Stefan Bergman
Publisher: American Mathematical Soc.
ISBN: 0821815059
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.

Conformal Mapping

Conformal Mapping PDF Author: Zeev Nehari
Publisher: Courier Corporation
ISBN: 0486145034
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.

Handbook of Conformal Mappings and Applications

Handbook of Conformal Mappings and Applications PDF Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1351718738
Category : Mathematics
Languages : en
Pages : 943

Get Book Here

Book Description
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.

The Cauchy Transform, Potential Theory and Conformal Mapping

The Cauchy Transform, Potential Theory and Conformal Mapping PDF Author: Steven R. Bell
Publisher: CRC Press
ISBN: 1498727212
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
The Cauchy Transform, Potential Theory and Conformal Mapping explores the most central result in all of classical function theory, the Cauchy integral formula, in a new and novel way based on an advance made by Kerzman and Stein in 1976.The book provides a fast track to understanding the Riemann Mapping Theorem. The Dirichlet and Neumann problems f

Numerical Conformal Mapping

Numerical Conformal Mapping PDF Author: Nicolas Papamichael
Publisher: World Scientific
ISBN: 9814289531
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
This is a unique monograph on numerical conformal mapping that gives a comprehensive account of the theoretical, computational and application aspects of the problems of determining conformal modules of quadrilaterals and of mapping conformally onto a rectangle. It contains a detailed study of the theory and application of a domain decomposition method for computing the modules and associated conformal mappings of elongated quadrilaterals, of the type that occur in engineering applications. The reader will find a highly useful and up-to-date survey of available numerical methods and associated computer software for conformal mapping. The book also highlights the crucial role that function theory plays in the development of numerical conformal mapping methods, and illustrates the theoretical insight that can be gained from the results of numerical experiments.This is a valuable resource for mathematicians, who are interested in numerical conformal mapping and wish to study some of the recent developments in the subject, and for engineers and scientists who use, or would like to use, conformal transformations and wish to find out more about the capabilities of modern numerical conformal mapping.

Conformal Mappings and Boundary Value Problems

Conformal Mappings and Boundary Value Problems PDF Author: Guo-Chun Wen
Publisher: American Mathematical Soc.
ISBN: 9780821886809
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Translated from the Chinese. Conformal mapping and boundary value problems are two major branches of complex function theory. The former is the geometric theory of analytic functions, and the latter is the analysis theory governing the close relationship between abstract theory and many concrete problems. Topics include applications of Cauchy type integrals, the Hilbert boundary value problem, quasiconformal mappings, and basic boundary value problems for harmonic functions. Annotation copyright by Book News, Inc., Portland, OR

Conformal Mapping

Conformal Mapping PDF Author: Roland Schinzinger
Publisher: Courier Corporation
ISBN: 0486150747
Category : Mathematics
Languages : en
Pages : 628

Get Book Here

Book Description
Beginning with a brief survey of some basic mathematical concepts, this graduate-level text proceeds to discussions of a selection of mapping functions, numerical methods and mathematical models, nonplanar fields and nonuniform media, static fields in electricity and magnetism, and transmission lines and waveguides. Other topics include vibrating membranes and acoustics, transverse vibrations and buckling of plates, stresses and strains in an elastic medium, steady state heat conduction in doubly connected regions, transient heat transfer in isotropic and anisotropic media, and fluid flow. Revision of 1991 ed. 247 figures. 38 tables. Appendices.

Handbook of Complex Analysis

Handbook of Complex Analysis PDF Author: Reiner Kuhnau
Publisher: Elsevier
ISBN: 0080495176
Category : Mathematics
Languages : en
Pages : 876

Get Book Here

Book Description
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

Menahem Max Schiffer: Selected Papers Volume 1

Menahem Max Schiffer: Selected Papers Volume 1 PDF Author: Peter Duren
Publisher: Springer Science & Business Media
ISBN: 0817680853
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.

The Madison Symposium on Complex Analysis

The Madison Symposium on Complex Analysis PDF Author: Edgar Lee Stout
Publisher: American Mathematical Soc.
ISBN: 0821851470
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
This volume contains the proceedings of a Symposium on Complex Analysis, held at the University of Wisconsin at Madison in June 1991 on the occasion of the retirement of Walter Rudin. During the week of the conference, a group of about two hundred mathematicians from many nations gathered to discuss recent developments in complex analysis and to celebrate Rudin's long and productive career. Among the main subjects covered are applications of complex analysis to operator theory, polynomial convexity, holomorphic mappings, boundary behaviour of holomorphic functions, function theory on the unit disk and ball, and some aspects of the theory of partial differential equations related to complex analysis. Containing papers by some of the world's leading experts in these subjects, this book reports on current directions in complex analysis and presents an excellent mixture of the analytic and geometric aspects of the theory.