The Inverse Problem of the Calculus of Variations

The Inverse Problem of the Calculus of Variations PDF Author: Dmitry V. Zenkov
Publisher: Springer
ISBN: 9462391092
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

The Inverse Problem of the Calculus of Variations

The Inverse Problem of the Calculus of Variations PDF Author: Dmitry V. Zenkov
Publisher: Springer
ISBN: 9462391092
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations

The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations PDF Author: Ian Anderson
Publisher: American Mathematical Soc.
ISBN: 082182533X
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
This monograph explores various aspects of the inverse problem of the calculus of variations for systems of ordinary differential equations. The main problem centres on determining the existence and degree of generality of Lagrangians whose system of Euler-Lagrange equations coicides with a given system of ordinary differential equations. The authors rederive the basic necessary and sufficient conditions of Douglas for second order equations and extend them to equations of higher order using methods of the variational bicomplex of Tulcyjew, Vinogradov, and Tsujishita. The authors present an algorithm, based upon exterior differential systems techniques, for solving the inverse problem for second order equations. a number of new examples illustrate the effectiveness of this approach.

New Prospects in Direct, Inverse and Control Problems for Evolution Equations

New Prospects in Direct, Inverse and Control Problems for Evolution Equations PDF Author: Angelo Favini
Publisher: Springer
ISBN: 3319114069
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of PDF Author: Joseph Grifone
Publisher: World Scientific
ISBN: 9814495360
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Variational Principles for Second-order Differential Equations

Variational Principles for Second-order Differential Equations PDF Author: J. Grifone
Publisher: World Scientific
ISBN: 9789810237349
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Handbook of Global Analysis

Handbook of Global Analysis PDF Author: Demeter Krupka
Publisher: Elsevier
ISBN: 0080556736
Category : Mathematics
Languages : en
Pages : 1243

Get Book Here

Book Description
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

The Geometry of Ordinary Variational Equations

The Geometry of Ordinary Variational Equations PDF Author: Olga Krupkova
Publisher: Springer
ISBN: 3540696571
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.

Finslerian Geometries

Finslerian Geometries PDF Author: P.L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9401142351
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins ·with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles.

Differential Geometry, Calculus of Variations, and Their Applications

Differential Geometry, Calculus of Variations, and Their Applications PDF Author: George M. Rassias
Publisher: CRC Press
ISBN: 1000943941
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.

Applied Calculus of Variations for Engineers

Applied Calculus of Variations for Engineers PDF Author: Louis Komzsik
Publisher: CRC Press
ISBN: 1482253607
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.