“The” Growth of Supermassive Black Holes and Their Host Galaxies in Cosmological Simulations

“The” Growth of Supermassive Black Holes and Their Host Galaxies in Cosmological Simulations PDF Author: Onur Çatmabacak
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

“The” Growth of Supermassive Black Holes and Their Host Galaxies in Cosmological Simulations

“The” Growth of Supermassive Black Holes and Their Host Galaxies in Cosmological Simulations PDF Author: Onur Çatmabacak
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Black Hole Formation and Growth

Black Hole Formation and Growth PDF Author: Tiziana Di Matteo
Publisher: Springer Nature
ISBN: 3662597993
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description
The ultimate proofs that black holes exist have been obtained very recently thanks to the detection of gravitational waves from their coalescence and due to material orbiting at a distance of some gravitational radii imaged by optical interferometry or X-ray reverberation mapping. This book provides three comprehensive and up-to-date reviews covering the gravitational wave breakthrough, our understanding of accretion and feedback in supermassive black holes and the relevance of black holes for the Universe since the Big Bang. Neil J. Cornish presents gravitational wave emission from black hole mergers and the physics of detection. Andrew King reviews the physics of accretion on to supermassive black holes and their feedback on host galaxies. Tiziana Di Matteo addresses our understanding of black hole formation at cosmic dawn, the emergence of the first quasars, black hole merging and structure formation. The topics covered by the 48th Saas-Fee Course provide a broad overview of the importance of black holes in modern astrophysics.

Modeling the Evolution of Galaxies and Massive Black Holes Across Cosmic Time

Modeling the Evolution of Galaxies and Massive Black Holes Across Cosmic Time PDF Author: Daniel Anglés-Alcázar
Publisher:
ISBN:
Category :
Languages : en
Pages : 207

Get Book Here

Book Description
I use cosmological hydrodynamic simulations to investigate different aspects of the evolution of galaxies and massive black holes across cosmic time. First, I present high resolution "zoom-in" simulations including various prescriptions for galactic outflows designed to explore the impact of star-formation driven winds on the morphological, dynamical, and structural properties of individual galaxies from early times down to z = 2. Simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kpc. I show that strong winds are required to suppress early star formation, maintain high gas fractions, redistribute star-forming gas and metals over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Next, I combine cosmological simulations with analytic models of black hole growth to investigate the physical mechanisms driving the observed connection between massive black holes and their host galaxies. I describe a plausible model consistent with available observations in which black hole growth is limited by galaxy-scale torques. In this torque-limited growth scenario, black holes and host galaxies evolve on average toward the observed scaling relations, regardless of the initial conditions, and with no need for mass averaging through mergers or additional self-regulation processes. Outflows from the accretion disk play a key role by providing significant mass loss, but there is no need for strong interaction with the inflowing gas in order to regulate black holes in a non-linear feedback loop. I discuss some of the main implications of this scenario in the context of current observations, including the distribution and evolution of Eddington ratios, the connection between major galaxy mergers, star formation, and nuclear activity, and the rapid growth of the first black holes in the early universe. Finally, I present preliminary results from simulations including a fully consistent treatment of black hole accretion and feedback indicating that the effects of powerful accretion-driven outflows on black hole growth itself may have a more limited impact than previously thought.

Measuring the Angular Momentum of Supermassive Black Holes

Measuring the Angular Momentum of Supermassive Black Holes PDF Author: Laura Brenneman
Publisher: Springer Science & Business Media
ISBN: 1461477719
Category : Science
Languages : en
Pages : 57

Get Book Here

Book Description
Measuring the spin distribution of supermassive black holes is of critical importance for understanding how these black holes and their host galaxies form and evolve over time, yet this type of study is only in its infancy. This brief describes how astronomers measure spin in supermassive black holes using X-ray spectroscopy. It also reviews the constraints that have been placed on the spin distribution in local, bright active galaxies over the past six years, and the cosmological implications of these constraints. Finally, it summarizes the open questions that remain in this exciting new field of research and points toward future discoveries soon to be made by the next generation of space-based observatories.

Simulating the Growth of a Disk Galaxy and Its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and Its Supermassive Black Hole in a Cosmological Context

Simulating the Growth of a Disk Galaxy and Its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and Its Supermassive Black Hole in a Cosmological Context PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Get Book Here

Book Description
Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Ly[alpha] forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely into stars. The fueling appears to be a stochastic process, with no preferred timescale for accretion over the duration of the simulation.

Growing Black Holes: Accretion in a Cosmological Context

Growing Black Holes: Accretion in a Cosmological Context PDF Author: Andrea Merloni
Publisher: Springer Science & Business Media
ISBN: 9783540252757
Category : Science
Languages : en
Pages : 524

Get Book Here

Book Description
Supermassive black holes are now believed to play an important role in the evolution of the Universe. Every respectable galaxy hosts in its center a black hole that appears to regulate the growth of the galaxy itself. In this book, leading experts in the field review the most recent theoretical and observational results on the following topics: - formation and growth of the first black holes in the Universe and their role in the formation and evolution of galaxies - the physics of black-hole accretion and the production of relativistic jets - binary black-hole mergers and gravitational radiation. Theoretical work is supplemented by the most recent exciting results from space and ground based observatories. This volume is useful research and reference tool for the entire astrophysical community.

Coevolution of Black Holes and Galaxies: Volume 1, Carnegie Observatories Astrophysics Series

Coevolution of Black Holes and Galaxies: Volume 1, Carnegie Observatories Astrophysics Series PDF Author: Luis C. Ho
Publisher: Cambridge University Press
ISBN: 9780521824491
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
This book was originally published in 2004. Black holes are among the most mysterious objects in the Universe. Weighing up to several billion Suns, massive black holes have long been suspected to be the central powerhouses of energetic phenomena such as quasars. Advances in astronomy have not only provided spectacular proof of this long-standing paradigm, but have revealed the unexpected result that far from being rare, exotic beasts, they inhabit the center of virtually all large galaxies. Candidate black holes have been identified in increasingly large numbers of galaxies, both inactive and active, to the point where statistical studies are possible. Fresh work has highlighted the close connection between the formation, growth, and evolution of supermassive black holes and their host galaxies. This volume contains the invited lectures from an international symposium that was held to explore this exciting theme, and is a valuable review for professional astronomers and graduate students.

Joint Evolution of Black Holes and Galaxies

Joint Evolution of Black Holes and Galaxies PDF Author: M. Colpi
Publisher: CRC Press
ISBN: 1420012096
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
Black holes are among the most mysterious objects that the human mind has been capable of imagining. As pure mathematical constructions, they are tools for exploiting the fundamental laws of physics. As astronomical sources, they are part of our cosmic landscape, warping space-time, coupled to the large-scale properties and life cycle of their host

Supermassive Black Holes in the Distant Universe

Supermassive Black Holes in the Distant Universe PDF Author: A.J. Barger
Publisher: Springer Science & Business Media
ISBN: 1402024711
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
Quasars, and the menagerie of other galaxies with "unusual nuclei", now collectively known as Active Galactic Nuclei or AGN, have, in one form or another, sparked the interest of astronomers for over 60 years. The only known mechanism that can explain the staggering amounts of energy emitted by the innermost regions of these systems is gravitational energy release by matter falling towards a supermassive black hole --- a black hole whose mass is millions to billions of times the mass of our Sun. AGN emit radiation at all wavelengths. X-rays originating at a distance of a few times the event horizon of the black hole are the emissions closest to the black hole that we can detect; thus, X-rays directly reveal the presence of active supermassive black holes. Oftentimes, however, the supermassive black holes that lie at the centers of AGN are cocooned in gas and dust that absorb the emitted low energy X-rays and the optical and ultraviolet light, hiding the black hole from view at these wavelengths. Until recently, this low-energy absorption presented a major obstacle in observational efforts to map the accretion history of the universe. In 1999 and 2000, the launches of the Chandra and XMM-Newton X-ray Observatories finally broke the impasse. The impact of these observatories on X-ray astronomy is similar to the impact that the Hubble Space Telescope had on optical astronomy. The astounding new data from these observatories have enabled astronomers to make enormous advances in their understanding of when accretion occurs.

Modeling Supermassive Black Holes in Cosmological Simulations

Modeling Supermassive Black Holes in Cosmological Simulations PDF Author: Michael Tremmel
Publisher:
ISBN:
Category :
Languages : en
Pages : 127

Get Book Here

Book Description
My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.