Geometrical Foundations of Asymptotic Inference

Geometrical Foundations of Asymptotic Inference PDF Author: Robert E. Kass
Publisher: John Wiley & Sons
ISBN: 1118165977
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing: * Basic properties of curved exponential families * Elements of second-order, asymptotic theory * The Fisher-Efron-Amari theory of information loss and recovery * Jeffreys-Rao information-metric Riemannian geometry * Curvature measures of nonlinearity * Geometrically motivated diagnostics for exponential familyregression * Geometrical theory of divergence functions * A classification of and introduction to additional work in thefield

Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers PDF Author: Masahito Hayashi
Publisher: World Scientific
ISBN: 981448198X
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.

Differential Geometry in Statistical Inference

Differential Geometry in Statistical Inference PDF Author: Shun'ichi Amari
Publisher: IMS
ISBN: 9780940600126
Category : Geometry, Differential
Languages : en
Pages : 254

Get Book Here

Book Description


Differential-Geometrical Methods in Statistics

Differential-Geometrical Methods in Statistics PDF Author: Shun-ichi Amari
Publisher: Springer Science & Business Media
ISBN: 1461250560
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2

Geometric Modeling in Probability and Statistics

Geometric Modeling in Probability and Statistics PDF Author: Ovidiu Calin
Publisher: Springer
ISBN: 3319077791
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.

Information Geometry and Its Applications

Information Geometry and Its Applications PDF Author: Shun-ichi Amari
Publisher: Springer
ISBN: 4431559787
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

Introduction to Empirical Processes and Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference PDF Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
ISBN: 0387749780
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Asymptotic Statistics

Asymptotic Statistics PDF Author: A. W. van der Vaart
Publisher: Cambridge University Press
ISBN: 9780521784504
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.

Mathematics of Neural Networks

Mathematics of Neural Networks PDF Author: Stephen W. Ellacott
Publisher: Springer Science & Business Media
ISBN: 9780792399339
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.